优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题
初中数学

如图,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于点 A ( 4 , 0 ) B ( 2 , 0 ) ,与 y 轴交于点 C ( 0 , 4 ) ,线段 BC 的中垂线与对称轴 l 交于点 D ,与 x 轴交于点 F ,与 BC 交于点 E ,对称轴 l x 轴交于点 H

(1)求抛物线的函数表达式;

(2)求点 D 的坐标;

(3)点 P x 轴上一点, P 与直线 BC 相切于点 Q ,与直线 DE 相切于点 R .求点 P 的坐标;

(4)点 M x 轴上方抛物线上的点,在对称轴 l 上是否存在一点 N ,使得以点 D P M N 为顶点的四边形是平行四边形?若存在,则直接写出 N 点坐标;若不存在,请说明理由.

来源:2018年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OADB 的顶点 A B 的坐标分别为 A ( - 6 , 0 ) B ( 0 , 4 ) .过点 C ( - 6 , 1 ) 的双曲线 y = k x ( k 0 ) 与矩形 OADB 的边 BD 交于点 E

(1)填空: OA =           k =         ,点 E 的坐标为         

(2)当 1 t 6 时,经过点 M ( t - 1 , - 1 2 t 2 + 5 t - 3 2 ) 与点 N ( - t - 3 , - 1 2 t 2 + 3 t - 7 2 ) 的直线交 y 轴于点 F ,点 P 是过 M N 两点的抛物线 y = - 1 2 x 2 + bx + c 的顶点.

①当点 P 在双曲线 y = k x 上时,求证:直线 MN 与双曲线 y = k x 没有公共点;

②当抛物线 y = - 1 2 x 2 + bx + c 与矩形 OADB 有且只有三个公共点,求 t 的值;

③当点 F 和点 P 随着 t 的变化同时向上运动时,求 t 的取值范围,并求在运动过程中直线 MN 在四边形 OAEB 中扫过的面积.

来源:2018年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系 xOy 中,已知点 A 和点 B 的坐标分别为 A ( - 2 , 0 ) B ( 0 , - 6 ) ,将 Rt Δ AOB 绕点 O 按顺时针方向分别旋转 90 ° 180 ° 得到 Rt A 1 OC Rt Δ EOF .抛物线 C 1 经过点 C A B ;抛物线 C 2 经过点 C E F

(1)点 C 的坐标为      ,点 E 的坐标为      ;抛物线 C 1 的解析式为      .抛物线 C 2 的解析式为        

(2)如果点 P ( x , y ) 是直线 BC 上方抛物线 C 1 上的一个动点.

①若 PCA = ABO 时,求 P 点的坐标;

②如图2,过点 P x 轴的垂线交直线 BC 于点 M ,交抛物线 C 2 于点 N ,记 h = PM + NM + 2 BM ,求 h x 的函数关系式,当 - 5 x - 2 时,求 h 的取值范围.

来源:2018年湖北省孝感市中考数学试卷
  • 题型:未知
  • 难度:未知

直线 y = - 3 2 x + 3 x 轴于点 A ,交 y 轴于点 B ,顶点为 D 的抛物线 y = - 3 4 x 2 + 2 mx - 3 m 经过点 A ,交 x 轴于另一点 C ,连接 BD AD CD ,如图所示.

(1)直接写出抛物线的解析式和点 A C D 的坐标;

(2)动点 P BD 上以每秒2个单位长的速度由点 B 向点 D 运动,同时动点 Q CA 上以每秒3个单位长的速度由点 C 向点 A 运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为 t 秒. PQ 交线段 AD 于点 E

①当 DPE = CAD 时,求 t 的值;

②过点 E EM BD ,垂足为点 M ,过点 P PN BD 交线段 AB AD 于点 N ,当 PN = EM 时,求 t 的值.

来源:2018年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 y = - 3 4 x + 3 x 轴交于点 A ,与 y 轴交于点 B .抛物线 y = - 3 8 x 2 + bx + c 经过 A B 两点,与 x 轴的另一个交点为 C

(1)求抛物线的解析式;

(2)点 P 是第一象限抛物线上的点,连接 OP 交直线 AB 于点 Q .设点 P 的横坐标为 m PQ OQ 的比值为 y ,求 y m 的函数关系式,并求出 PQ OQ 的比值的最大值;

(3)点 D 是抛物线对称轴上的一动点,连接 OD CD ,设 ΔODC 外接圆的圆心为 M ,当 sin ODC 的值最大时,求点 M 的坐标.

来源:2018年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线 y = - 2 3 x 2 + 7 3 x - 1 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C ,其顶点为 D .将抛物线位于直线 l : y = t ( t < 25 24 ) 上方的部分沿直线 l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“ M ”形的新图象.

(1)点 A B D 的坐标分别为                       

(2)如图①,抛物线翻折后,点 D 落在点 E 处.当点 E ΔABC 内(含边界)时,求 t 的取值范围;

(3)如图②,当 t = 0 时,若 Q 是“ M ”形新图象上一动点,是否存在以 CQ 为直径的圆与 x 轴相切于点 P ?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2018年湖北省仙桃市中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线 L : y = - x 2 + bx + c 经过点 A ( 0 , 1 ) ,与它的对称轴直线 x = 1 交于点 B

(1)直接写出抛物线 L 的解析式;

(2)如图1,过定点的直线 y = kx - k + 4 ( k < 0 ) 与抛物线 L 交于点 M N .若 ΔBMN 的面积等于1,求 k 的值;

(3)如图2,将抛物线 L 向上平移 m ( m > 0 ) 个单位长度得到抛物线 L 1 ,抛物线 L 1 y 轴交于点 C ,过点 C y 轴的垂线交抛物线 L 1 于另一点 D F 为抛物线 L 1 的对称轴与 x 轴的交点, P 为线段 OC 上一点.若 ΔPCD ΔPOF 相似,并且符合条件的点 P 恰有2个,求 m 的值及相应点 P 的坐标.

来源:2018年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线 C 1 : y = a x 2 - 2 ax + c ( a < 0 ) x 轴交于 A B 两点,与 y 轴交于点 C .已知点 A 的坐标为 ( - 1 , 0 ) ,点 O 为坐标原点, OC = 3 OA ,抛物线 C 1 的顶点为 G

(1)求出抛物线 C 1 的解析式,并写出点 G 的坐标;

(2)如图2,将抛物线 C 1 向下平移 k ( k > 0 ) 个单位,得到抛物线 C 2 ,设 C 2 x 轴的交点为 A ' B ' ,顶点为 G ' ,当△ A ' B ' G ' 是等边三角形时,求 k 的值:

(3)在(2)的条件下,如图3,设点 M x 轴正半轴上一动点,过点 M x 轴的垂线分别交抛物线 C 1 C 2 P Q 两点,试探究在直线 y = - 1 上是否存在点 N ,使得以 P Q N 为顶点的三角形与 ΔAOQ 全等,若存在,直接写出点 M N 的坐标:若不存在,请说明理由.

来源:2018年湖北省随州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于 A B 两点,与 y 轴交于点 C ,且 OA = 2 OB = 8 OC = 6

(1)求抛物线的解析式;

(2)点 M A 点出发,在线段 AB 上以每秒3个单位长度的速度向 B 点运动,同时,点 N B 出发,在线段 BC 上以每秒1个单位长度的速度向 C 点运动,当其中一个点到达终点时,另一个点也停止运动,当 ΔMBN 存在时,求运动多少秒使 ΔMBN 的面积最大,最大面积是多少?

(3)在(2)的条件下, ΔMBN 面积最大时,在 BC 上方的抛物线上是否存在点 P ,使 ΔBPC 的面积是 ΔMBN 面积的9倍?若存在,求点 P 的坐标;若不存在,请说明理由.

来源:2017年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = 1 2 x 2 + bx + c 经过点 A ( - 2 , 0 ) B ( 0 - 4 ) x 轴交于另一点 C ,连接 BC

(1)求抛物线的解析式;

(2)如图, P 是第一象限内抛物线上一点,且 S ΔPBO = S ΔPBC ,求证: AP / / BC

(3)在抛物线上是否存在点 D ,直线 BD x 轴于点 E ,使 ΔABE 与以 A B C E 中的三点为顶点的三角形相似(不重合)?若存在,请求出点 D 的坐标;若不存在,请说明理由.

来源:2018年湖北省十堰市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读理解:在平面直角坐标系中,若两点 P Q 的坐标分别是 P ( x 1 y 1 )

Q ( x 2 y 2 ) ,则 P Q 这两点间的距离为 | PQ | = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2 .如 P ( 1 , 2 ) Q ( 3 , 4 ) ,则 | PQ | = ( 1 - 3 ) 2 + ( 2 - 4 ) 2 = 2 2

对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.

解决问题:如图,已知在平面直角坐标系 xOy 中,直线 y = kx + 1 2 y 轴于点 A ,点 A 关于 x 轴的对称点为点 B ,过点 B 作直线 l 平行于 x 轴.

(1)到点 A 的距离等于线段 AB 长度的点的轨迹是                               

(2)若动点 C ( x , y ) 满足到直线 l 的距离等于线段 CA 的长度,求动点 C 轨迹的函数表达式;

问题拓展:(3)若(2)中的动点 C 的轨迹与直线 y = kx + 1 2 交于 E F 两点,分别过 E F 作直线 l 的垂线,垂足分别是 M N ,求证:

EF ΔAMN 外接圆的切线;

1 AE + 1 AF 为定值.

来源:2018年湖北省荆州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线 C 1 : y = x 2 + ax C 2 : y = x 2 + bx 相交于点 O C C 1 C 2 分别交 x 轴于点 B A ,且 B 为线段 AO 的中点.

(1)求 a b 的值;

(2)若 OC AC ,求 ΔOAC 的面积;

(3)抛物线 C 2 的对称轴为 l ,顶点为 M ,在(2)的条件下:

①点 P 为抛物线 C 2 对称轴 l 上一动点,当 ΔPAC 的周长最小时,求点 P 的坐标;

②如图2,点 E 在抛物线 C 2 上点 O 与点 M 之间运动,四边形 OBCE 的面积是否存在最大值?若存在,求出面积的最大值和点 E 的坐标;若不存在,请说明理由.

来源:2017年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于原点及点 A ,且经过点 B ( 4 , 8 ) ,对称轴为直线 x = - 2

(1)求抛物线的解析式;

(2)设直线 y = kx + 4 与抛物线两交点的横坐标分别为 x 1 x 2 ( x 1 < x 2 ) ,当 1 x 2 - 1 x 1 = 1 2 时,求 k 的值;

(3)连接 OB ,点 P x 轴下方抛物线上一动点,过点 P OB 的平行线交直线 AB 于点 Q ,当 S ΔPOQ : S ΔBOQ = 1 : 2 时,求出点 P 的坐标.

(坐标平面内两点 M ( x 1 y 1 ) N ( x 2 y 2 ) 之间的距离 MN = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2 )

来源:2018年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a ( x - 1 ) 2 过点 ( 3 , 1 ) D 为抛物线的顶点.

(1)求抛物线的解析式;

(2)若点 B C 均在抛物线上,其中点 B ( 0 , 1 4 ) ,且 BDC = 90 ° ,求点 C 的坐标;

(3)如图,直线 y = kx + 4 - k 与抛物线交于 P Q 两点.

①求证: PDQ = 90 °

②求 ΔPDQ 面积的最小值.

来源:2018年湖北省黄石市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在直角坐标系 xOy 中,菱形 OABC 的边 OA x 轴正半轴上,点 B C 在第一象限, C = 120 ° ,边长 OA = 8 .点 M 从原点 O 出发沿 x 轴正半轴以每秒1个单位长的速度作匀速运动,点 N A 出发沿边 AB - BC - CO 以每秒2个单位长的速度作匀速运动,过点 M 作直线 MP 垂直于 x 轴并交折线 OCB P ,交对角线 OB Q ,点 M 和点 N 同时出发,分别沿各自路线运动,点 N 运动到原点 O 时, M N 两点同时停止运动.

(1)当 t = 2 时,求线段 PQ 的长;

(2)求 t 为何值时,点 P N 重合;

(3)设 ΔAPN 的面积为 S ,求 S t 的函数关系式及 t 的取值范围.

来源:2018年湖北省黄冈市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学试题