某自行车厂计划每天平均生产n辆自行车,而实际产量与计划产量相比有出入.下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):
星期 |
一 |
二 |
三 |
四 |
五 |
实际生产量 |
+5 |
﹣2 |
﹣4 |
+13 |
﹣3 |
(1)用含n的代数式表示本周前三天生产自行车的总数;
(2)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,当n=100时,那么该厂工人这一周的工资总额是多少元?
(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n=100时,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.
列式并计算:
(1)﹣1减去的差乘以﹣7的倒数的积;
(2)﹣2、5、﹣9这三个数的和的绝对值比这三个数的绝对值的和小多少?
已知a的相反数为-2,b的倒数为,c的绝对值为2,求a+b+c2的值.
我们规定“*”是一种数学运算符号,两数A、B通过“*”运算得(A+2)×2-B,即A*B=(A+2)×2-B,例如,3*5=(3+2)×2-5=5
(1)求6*7的值;
(2)6*7的值与7*6的值相等吗?
如果a,b互为相反数,c,d互为倒数,m的绝对值为2,那么+m-cd的值为 .
A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)用(a,b)表示,则从景点A到景点C用时最少的路线是 ( )
A.A→E→C | B.A→B→C | C.A→E→B→C | D.A→B→E→C |
某市区自2014年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):
月用水量(吨) |
水价(元/吨) |
第一级 20吨以下(含20吨) |
1.6 |
第二级 20吨﹣30吨(含30吨) |
2.4 |
第三级 30吨以上 |
3.2 |
例:某用户的月用水量为32吨,按三级计量应缴水费为:
1.6×20+2.4×10+3.2×2=62.4(元)
(1)如果甲用户的月用水量为12吨,则甲需缴的水费为 元;
(2)如果乙用户缴的水费为39.2元,则乙月用水量 吨;
(3)如果丙用户的月用水量为a吨,则丙用户该月应缴水费多少元?(用含a的代数式表示,并化简)
出租车司机小李某天下午的营运全是在东西走向的城中路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:+8, -7, +10, -6,+3,-5,+9,-6
(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李在出发地的什么方向?距下午出发地有多远?
(2)如果汽车耗油量为0.5升/千米,油箱容量为26升,若出发时油箱装满汽油,请你判断途中是否需要补充汽油?
有一批水果,包装质量为每筐25千克,现抽取8筐样品进行检测,结果称重如下(单位:千克):27,24,23,28,21,26,22,27,为了求得8筐样品的总质量,我们可以选取的一个恰当的基准数进行简化运算.
(1)你认为选取的一个恰当的基准数为 ;
(2)根据你选取的基准数,用正、负数填写上表;
原质量 |
27 |
24 |
23 |
28 |
21 |
26 |
22 |
27 |
与基准数的差距 |
|
|
|
|
|
|
|
|
(3)这8筐水果的总质量是多少?
出租车司机小傅某天下午营运全是在东西走向的大道上行驶的.若如果规定向东为正,则行车里程(单位:km)如下:
+11,-2,+3,+10,-11,+5,-15,-8
(1)当把最后一名乘客送到目的地时,小傅距离出车地点的距离为多少?
(2)若每千米的营运额为7元,成本为1.5元/km,则这天下午他盈利多少元?
观察下列式子:
;;;…….
(1)请写出第4个等式: ;
(2)请写出第n个等式 ;
国庆放假时,小红一家三口一起乘小轿车去乡下探望爷爷、奶奶和外公、外婆.早上从家里出发,向东走了6千米到超市买东西,然后又向东走了1.5千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里.
(1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;
(2)问超市A和外公家C相距多少千米?
(3)若小轿车每千米耗油0.08升,求小红一家从出发到返回家所经历路程小车的耗油量.
观察下列等式,探究其中的规律:
(1)根据以上观察,计算:①
②
(2)猜想:当n为自然数时,
试题篮
()