优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 计算器—基础知识 / 解答题
初中数学

(1)在图1中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),请写出图中的顶点C的坐标( _________  _________ ).

(2)在图2中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),求出图中的标点C的坐标,并说明理由(C点坐标用含c,d,e的代数式表示).
归纳与发现
(3)通过对图1,2的观察,你会发现:图3中的平行四边形ABCD的顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)时,则横坐标a,c,m,e之间的等量关系为 _________ 

  • 题型:未知
  • 难度:未知

直线k≠0)与坐标轴分别交于AB两点,OAOB的长分别
是方程=0的两根(OAOB).动点PO点出发,沿路线OBA以每
秒1个单位长度的速度运动,到达A点时运动停止.
直接写出AB两点的坐标;
设点P的运动时间为t(秒),△OPA的面积为S,求St之间的函数关系式;
S=12时,求出点P的坐标,此时,在坐标轴上是否存在点M,使以OA
PM为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分9分)我市准备在相距2千米的M,N两工厂间修一条笔直的公路,但在M地北偏东45°方向、N地北偏西60°方向的P处,有一个半径为0.6千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:≈1.41,≈1.73)

  • 题型:未知
  • 难度:未知

已知动点P以每秒2cm的速度沿如图所示的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S关于时间t的函数图象如图所示,若AB=6cm,试回答下列问题:
(1)动点P在线段                上运动的过程中△ABP的面积S保持不变.
(2)BC=      cm;  CD=      cm;   DE=      cm;   EF=      cm
(3)求出图乙中的a与b的值.

  • 题型:未知
  • 难度:未知

已知直线y= x+m与x轴、y轴分别交于点A、B,与双曲线y=  分别交于点C、D,且点C的坐标为(-1,2).
分别求出直线AB及双曲线的函数表达式;
利用图像直接写出:当x在什么范围内取值时y>y

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)

(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1
(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2

  • 题型:未知
  • 难度:未知

(1)计算:
(2)化简:

  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,已知A(-1,5),B(4,2),C(-1,0)三点。
(1)点A关于原点O的对称点A′的坐标为     ,点B关于x轴对称点B′的坐标为     ,点C关于y轴对称点C′的坐标为     
(2)求(1)中的△A′B′C′的面积。

  • 题型:未知
  • 难度:未知

某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:

若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的
求y与x之间的函数关系式;
由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.

  • 题型:未知
  • 难度:未知

小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4m,BC=10m,CD与地面成30°角,若此时测得1m杆的影长为2m,求电线杆的高度(结果精确到0.1,≈1.41,≈1.73)

  • 题型:未知
  • 难度:未知

数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.

  • 题型:未知
  • 难度:未知

如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且.

(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.并根据图像写出;
(3)方程的解;
(4)使一次函数的值大于反比例函数的值的的取值范围;

  • 题型:未知
  • 难度:未知

已知一次函数的图像经过点(—2,-2)和点(2,4)
(1)求这个函数的解析式;
(2)求这个函数的图像与y轴的交点坐标。

  • 题型:未知
  • 难度:未知

如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A的仰角∠BDA=60°,求旗杆AB的高度.(结果保留根号)

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上一动点,连结CD,DE,以CD,DE为边作CDEF。

(1)当0< m <8时,求CE的长(用含m的代数式表示);
(2)当m =3时,是否存在点D,使CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;
(3)点D在整个运动过程中,若存在唯一的位置,使得CDEF为矩形,请求出所有满足条件的m的值。

  • 题型:未知
  • 难度:未知

初中数学计算器—基础知识解答题