优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 列代数式 / 解答题
初中数学

某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”
期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.
方案一:买一套西装送一条领带;
方案二:西装和领带都按定价的90%付款.
现某客户要到该商场购买西装20套,领带x条(x>20).
(1)若该客户按方案一购买,需付款                 元.(用含x的代数式表示)
若该客户按方案二购买,需付款                 元.(用含x的代数式表示)
(2)若x=30,通过计算说明此时按(1)哪种方案购买较为合算?
(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.

  • 题型:未知
  • 难度:未知

如图,长方形的长为,宽为

(1)用含的代数式表示右图阴影部分的面积S阴影.
(2)当a=5,b=2时,求S阴影.(取3.14)

  • 题型:未知
  • 难度:未知

如图,平面内有公共端点的6条射线O

A.O B.O C.O D.OE、OF,按照图中的规律,从射线OA开始,按照逆时针方向,依次在射线上画点表示1,2,3,4,5,6,7,…


(1)根据图中规律,表示“19”的点在射线          上;
(2)按照图中规律推算,表示“2014”的点在射线          上;
(3)请你写出在射线OC上表示的数的规律(用含的代数式表示)                  

  • 题型:未知
  • 难度:未知

某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)当有张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?

  • 题型:未知
  • 难度:未知

某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:
①买一套西装送一条领带;
②西装和领带都按定价的90%付款.
现某客户要到该服装厂购买西装20套,领带x条(x>20).
(1)若该客户按方案①购买,需付款                        元(用含x的代数式表示);
若该客户按方案②购买,需付款                        元(用含x的代数式表示);
(2)若x=30,通过计算说明此时按哪种方案购买较为合算?

  • 题型:未知
  • 难度:未知

扬州万家福商场将进货价80元的某品牌童装,以120元的销售价售出,平均每天能售出20件.则单件利润为120-80=40元,每天的盈利为40×20=800元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.(盈利=单件利润×销售量)
(1)若每件童装的销售价下降2元,则:
①降价后,每件童装的销售价为______________元;
②降价后,每件童装的利润为______________元;
③降价后,商场平均每天的销售量为__________________件.
(2)若设每件童装的销售价下降a元,试用含a的代数式填空:
①降价后,每件童装的销售价为______________元;
②降价后,每件童装的利润为______________元;
③降价后,商场平均每天的销售量为__________________件.
(3)如果商场要想平均每天销售这种童装盈利1200元.商场经理甲说“在原售价每件120元的基础上再下降20元,可以完成任务”,商场经理乙说“不用降那么多,在原售价每件120元的基础上再下降10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.

  • 题型:未知
  • 难度:未知

操作与思考:
操作:将长为1,宽为的长方形纸片(),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作).如此反复操作下去,若在第n次操作后剩下的长方形是正方形,则操作终止.
思考:

(1)第一次操作后,剩下的长方形的边长分别为             .(用含的式子表示)
(2)如果第二次操作后剩下的长方形恰好是正方形,则的值是             
(3)第三次操作后,若剩下的长方形恰好是正方形,试求的值.

  • 题型:未知
  • 难度:未知

一个三角形的第一条边长为(x+2)cm,第二条边长比第一条边长小5cm,第三条边长是第二条边长的2倍.
(1)用含x的代数式表示这个三角形的周长;
(2)计算当x为6cm时这个三角形的周长.

  • 题型:未知
  • 难度:未知

有一长为240米的圆形跑道,小明和他的小狗同时从跑道的点P处出发沿顺时针方向跑步.已知小明的速度为4米/秒,小狗的速度为12米/秒.跑步的时间记为秒.在跑步过程中,小明和他的小狗之间相距(取两者之间较短一段圆弧跑道的长度)为米.
(1)当秒和秒时,分别求的值?
(2)当时,请用含的代数式表示
(3)当时,请用含的代数式表示.(可直接写出结果)

  • 题型:未知
  • 难度:未知

某空调器销售商,今年四月份销出空调台,五月份销售空调比四月份的2倍多1台,六月份销售空调比前两个月的总和的4倍少15台.
(1)用代数式表示该销售商今年第二季度共销售空调多少台?
(2)当四月份销出空调为111台时,求第二季度销售的空调总数.

  • 题型:未知
  • 难度:未知

某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:

排数
1
2
3
4
座位数
50
53
56
59

 
按这种方式排下去,
(1)第5、6排各有多少个座位?
(2)第n排有多少个座位?
(3)根据(2)的代数式,判断第25排有多少个座位?

  • 题型:未知
  • 难度:未知

四人做传数游戏,甲任报一个数给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所听到的数减1报出答案:
①若甲报的数为19,则丁的答案是多少?
②请把游戏过程用代数式的程序描述出来。
③若丁报出的答案是35,则甲传给乙的数是多少?

  • 题型:未知
  • 难度:未知

下图方式摆放餐桌和椅子:

(1)1张餐桌可坐4人,2张餐桌可坐     人。
(2)按照上图的方式继续排列餐桌,完成下表。

桌子张数
3
4
n
可坐人数
 
 
 

 

  • 题型:未知
  • 难度:未知

将连续的正整数1,2,3,4,…,排列成如下的数表,用3×3的方框框出9个数(如图).

(1)图中方框框出的9个数的和与方框正中间的数10有什么关系?
(2)将方框上下左右平移,但一定要框住数表中的9个数.若设正中间的数为a,用含a的代数式表示方框框住的9个数字,并计算这9个数的和.
(3)能否在方框中框出9个数,使这9个数的和为270?若能,求出这9个数;若不能,请说明理由.

  • 题型:未知
  • 难度:未知

某城市出租车收费标准如下:3公里以内(含3公里)收费8元,超过3公里的部分每公里收费1.5元.
(1)若行驶x公里(x为整数),试用含x的代数式表示应收的车费;
(2)若某人乘坐出租汽车行驶8公里,则应付车费多少元?

  • 题型:未知
  • 难度:未知

初中数学列代数式解答题