如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆按此规律排列下去,第9个图形中圆的个数是 个.
如图,在平面直角坐标系中,将边长为1的正方形 绕点 顺时针旋转 后得到正方形 ,依此方式,绕点 连续旋转2019次得到正方形 ,那么点 的坐标是
A. |
, |
B. |
|
C. |
, |
D. |
|
如图,在平面直角坐标系中,直线 的函数表达式为 ,点 的坐标为 ,以 为圆心, 为半径画圆,交直线 于点 ,交 轴正半轴于点 ,以 为圆心, 为半径画圆,交直线 于点 ,交 轴正半轴于点 ,以 为圆心, 为半径画圆,交直线 于点 ,交 轴正半轴于点 ; 按此做法进行下去,其中 的长为 .
如图,在单位为1的方格纸上,△ ,△ ,△ , ,都是斜边在 轴上,斜边长分别为2,4,6, 的等腰直角三角形,若△ 的顶点坐标分别为 , , ,则依图中所示规律, 的坐标为
A. |
|
B. |
|
C. |
|
D. |
|
如图,边长为1的正三角形 放置在边长为2的正方形内部,顶点 在正方形的一个顶点上,边 在正方形的一边上,将 绕点 顺时针旋转,当点 落在正方形的边上时,完成第1次无滑动滚动(如图 ;再将 绕点 顺时针旋转,当点 落在正方形的边上时,完成第2次无滑动滚动(如图 , ,每次旋转的角度都不大于 ,依次这样操作下去,当完成第2016次无滑动滚动时,点 经过的路径总长为 .
如图,由两个长为2,宽为1的长方形组成“7”字图形
(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形,其中顶点位于轴上,顶点,位于轴上,为坐标原点,则的值为 .
(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点,摆放第三个“7”字图形得顶点,依此类推,,摆放第个“7”字图形得顶点,,则顶点的坐标为 .
在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.
用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:
(1)填写上图中第四个图中y的值为 ,第五个图中y的值为 .
(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为 ,当 时,对应的y= .
(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?
如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为 .
下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为( )
A. |
|
B. |
|
C. |
|
D. |
|
下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒, ,按此规律,图案⑦需 根火柴棒.
试题篮
()