(每题4分,本题满分12分)(1)先化简,再求值
5(3a2b-ab2)-4(-ab2+3a2b),其中a=-1,b=2.
(2)某同学在计算多项式M加上x2-3x+7时,因误认为是加上x2+3x+7,结果得到答案是15x2+2x-4.试问:(1)M是怎样的整式?(2)这个问题的正确结果应是多少?
(3)“囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.
①用含有x、y的代数式表示右图中“囧”的面积;
②当x=4,y=时,求此时“囧”的面积
甲从一个鱼摊买三条鱼,平均每条元,又从另一个鱼摊买了两条鱼,平均每条元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是 ( )
A. | B. | C. | D.与和大小无关 |
(本题5分)已知,
(1)求的值;(结果用x、y表示)
(2)当与互为相反数时,求(1)中代数式的值.
(本题8分)如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足.
(1)求A、B两点之间的距离;
(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动.设运动的时间为t(秒),
①分别表示甲、乙两小球到原点的距离(用t表示);
②求甲、乙两小球到原点的距离相等时经历的时间.
化简求值(每题5分,共15分)
(1)先化简再求值:,其中
(2)已知有理数a,b,c在数轴上的位置如图,试化简代数式:|b|-|c+b|+|c+a|+|b-a|.
(3)已知关于x、y的多项式合并后不含有二次项,求的值.
为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节水的目的. 该市自来水收费价格见价目表.
(1)填空:若该户居民2月份用水4m3,则应收水费 元;
(2)若该户居民3月份用水am3(其中6<a<10),则应收水费多少元?(用a的整式表示并化简)
(3)若该户居民4,5月份共用水15m3(5月份用水量超过了4月份),设4月份用水xm3,求该户居民4,5月份共交水费多少元?(用x的整式表示并化简)
某自行车厂计划每天平均生产n辆自行车,而实际产量与计划产量相比有出入.下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):
星期 |
一 |
二 |
三 |
四 |
五 |
实际生产量 |
+5 |
-2 |
-4 |
+13 |
-3 |
(1)用含n的代数式表示本周前三天生产自行车的总数;
(2)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,当n=100时,那么该厂工人这一周的工资总额是多少元?
(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,则这一周工人的工资与按日计件的工资哪一个更多?请说明理由.
“囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.
(1)用含有x、y的代数式表示右图中“囧”的面积;
(2)当y=,x=4时,求此时“囧”的面积.
化简或化简求值(每小题6分,共12分)
(1)|a-2|+(b+3)2=0,求3a2b-[2ab2-2(ab-1.5a2b)+ab]+3ab2的值;
(2)已知有理数a、b、c在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.
某工厂第一车间有人,第二车间比第一车间人数的少30人,如果从第二车间调出10人到第一车间,那么:
(1)两个车间共有多少人?
(2)调动后,第一车间的人数比第二车间多多少人?
试题篮
()