优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 平面直角坐标系
初中数学

在直角坐标系中,过原点 O 及点 A ( 8 , 0 ) C ( 0 , 6 ) 作矩形 OABC 、连接 OB ,点 D OB 的中点,点 E 是线段 AB 上的动点,连接 DE ,作 DF DE ,交 OA 于点 F ,连接 EF .已知点 E A 点出发,以每秒1个单位长度的速度在线段 AB 上移动,设移动时间为 t 秒.

(1)如图1,当 t = 3 时,求 DF 的长.

(2)如图2,当点 E 在线段 AB 上移动的过程中, DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出 tan DEF 的值.

(3)连接 AD ,当 AD ΔDEF 分成的两部分的面积之比为 1 : 2 时,求相应的 t 的值.

来源:2017年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

特例感知

(1)如图1,对于抛物线,下列结论正确的序号是  

①抛物线都经过点

②抛物线的对称轴由抛物线的对称轴依次向左平移个单位得到;

③抛物线与直线的交点中,相邻两点之间的距离相等.

形成概念

(2)把满足为正整数)的抛物线称为“系列平移抛物线”.

知识应用

在(2)中,如图2.

①“系列平移抛物线”的顶点依次为,用含的代数式表示顶点的坐标,并写出该顶点纵坐标与横坐标之间的关系式;

②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:,其横坐标分别为为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.

③在②中,直线分别交“系列平移抛物线”于点,连接,判断是否平行?并说明理由.

来源:2019年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,拋物线轴交于两点,与轴交于点,且点的坐标为,点的坐标为,对称轴为直线.点是抛物线上一个动点,设点的横坐标为,连接

(1)求抛物线的函数表达式;

(2)当的面积等于的面积的时,求的值;

(3)在(2)的条件下,若点轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点为顶点的四边形是平行四边形.若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2020年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点Bx轴的正半轴上. OAB 90 ° OA AB OBOC的长分别是一元二次方程 x 2 11 x + 30 0 的两个根 OB OC

(1)求点A和点B的坐标.

(2)点P是线段OB上的一个动点(点P不与点OB重合),过点P的直线ly轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知 t 4 时,直线l恰好过点C.当 0 t 3 时,求m关于t的函数关系式.

(3)当 m 3 . 5 时,请直接写出点P的坐标.

来源:2016年黑龙江省七台河市中考数学试卷
  • 题型:未知
  • 难度:未知

已知平面图形 S ,点 P Q S 上任意两点,我们把线段 PQ 的长度的最大值称为平面图形 S 的“宽距”.例如,正方形的宽距等于它的对角线的长度.

(1)写出下列图形的宽距:

①半径为1的圆:       

②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:     

(2)如图2,在平面直角坐标系中,已知点 A ( - 1 , 0 ) B ( 1 , 0 ) C 是坐标平面内的点,连接 AB BC CA 所形成的图形为 S ,记 S 的宽距为 d

①若 d = 2 ,用直尺和圆规画出点 C 所在的区域并求它的面积(所在区域用阴影表示);

②若点 C M 上运动, M 的半径为1,圆心 M 在过点 ( 0 , 2 ) 且与 y 轴垂直的直线上.对于 M 上任意点 C ,都有 5 d 8 ,直接写出圆心 M 的横坐标 x 的取值范围.

来源:2019年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, O 为坐标原点,点 A 的坐标为 ( 5 , 0 ) ,菱形 OABC 的顶点 B C 都在第一象限, tan AOC = 4 3 ,将菱形绕点 A 按顺时针方向旋转角 α ( 0 ° < α < AOC ) 得到菱形 FADE (点 O 的对应点为点 F ) EF OC 交于点 G ,连接 AG

(1)求点 B 的坐标.

(2)当 OG = 4 时,求 AG 的长.

(3)求证: GA 平分 OGE

(4)连接 BD 并延长交 x 轴于点 P ,当点 P 的坐标为 ( 12 , 0 ) 时,求点 G 的坐标.

来源:2016年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知 ABCD AB / / x 轴, AB = 6 ,点 A 的坐标为 ( 1 , 4 ) ,点 D 的坐标为 ( 3 , 4 ) ,点 B 在第四象限,点 P ABCD 边上的一个动点.

(1)若点 P 在边 BC 上, PD = CD ,求点 P 的坐标.

(2)若点 P 在边 AB AD 上,点 P 关于坐标轴对称的点 Q 落在直线 y = x 1 上,求点 P 的坐标.

(3)若点 P 在边 AB AD CD 上,点 G AD y 轴的交点,如图2,过点 P y 轴的平行线 PM ,过点 G x 轴的平行线 GM ,它们相交于点 M ,将 ΔPGM 沿直线 PG 翻折,当点 M 的对应点落在坐标轴上时,求点 P 的坐标.(直接写出答案)

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 B 1 在直线 l : y = 1 2 x 上,点 B 1 的横坐标为2,过点 B 1 B 1 A 1 l ,交 x 轴于点 A 1 ,以 A 1 B 1 为边,向右作正方形 A 1 B 1 B 2 C 1 ,延长 B 2 C 1 x 轴于点 A 2 ;以 A 2 B 2 为边,向右作正方形 A 2 B 2 B 3 C 2 ,延长 B 3 C 2 x 轴于点 A 3 ;以 A 3 B 3 为边,向右作正方形 A 3 B 3 B 4 C 3 ,延长 B 4 C 3 x 轴于点 A 4 ;照这个规律进行下去,则第 n 个正方形 A n B n B n + 1 C n 的边长为     

           (结果用含正整数 n 的代数式表示).

来源:2021年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,平行四边形 ABCD 的对称中心是坐标原点,顶点 A B 的坐标分别是 ( 1 , 1 ) ( 2 , 1 ) ,将平行四边形 ABCD 沿 x 轴向右平移3个单位长度,则顶点 C 的对应点 C 1 的坐标是  

来源:2021年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:在平面直角坐标系中,一个图形先向右平移 a 个单位,再绕原点按顺时针方向旋转 θ 角度,这样的图形运动叫作图形的 γ ( a , θ ) 变换.

如图,等边 ΔABC 的边长为1,点 A 在第一象限,点 B 与原点 O 重合,点 C x 轴的正半轴上.△ A 1 B 1 C 1 就是 ΔABC γ ( 1 , 180 ° ) 变换后所得的图形.

ΔABC γ ( 1 , 180 ° ) 变换后得△ A 1 B 1 C 1 ,△ A 1 B 1 C 1 γ ( 2 , 180 ° ) 变换后得△ A 2 B 2 C 2 ,△ A 2 B 2 C 2 γ ( 3 , 180 ° ) 变换后得△ A 3 B 3 C 3 ,依此类推

A n 1 B n 1 C n 1 γ ( n , 180 ° ) 变换后得△ A n B n C n ,则点 A 1 的坐标是  ,点 A 2018 的坐标是  

来源:2018年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,对于不在坐标轴上的任意一点 A ( x , y ) ,我们把点 B ( 1 x 1 y ) 称为点 A 的"倒数点".如图,矩形 OCDE 的顶点 C ( 3 , 0 ) ,顶点 E y 轴上,函数 y = 2 x ( x > 0 ) 的图象与 DE 交于点 A .若点 B 是点 A 的"倒数点",且点 B 在矩形 OCDE 的一边上,则 ΔOBC 的面积为   

来源:2021年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

已知直线 y = - x + 1 x 轴、 y 轴分别交于 A B 两点,点 P 是第一象限内的点,若 ΔPAB 为等腰直角三角形,则点 P 的坐标为 (    )

A.

( 1 , 1 )

B.

( 1 , 1 ) ( 1 , 2 )

C.

( 1 , 1 ) ( 1 , 2 ) ( 2 , 1 )

D.

( 0 , 0 ) ( 1 , 1 ) ( 1 , 2 ) ( 2 , 1 )

来源:2021年贵州省黔东南州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC 的两边 OC OA 分别在坐标轴上,且 OA = 2 OC = 4 ,连接 OB .反比例函数 y = k 1 x ( x > 0 ) 的图象经过线段 OB 的中点 D ,并与 AB BC 分别交于点 E F .一次函数 y = k 2 x + b 的图象经过 E F 两点.

(1)分别求出一次函数和反比例函数的表达式;

(2)点 P x 轴上一动点,当 PE + PF 的值最小时,点 P 的坐标为   

来源:2021年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,某广场地面是用 A B C 三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块 ( A 型)地砖记作 ( 1 , 1 ) ,第二块 ( B 型)地砖记作 ( 2 , 1 ) ( m , n ) 位置恰好为 A 型地砖,则正整数 m n 须满足的条件是          

来源:2020年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

小明为画一个零件的轴截面,以该轴截面底边所在的直线为 x 轴,对称轴为 y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取 1 mm ,则图中转折点 P 的坐标表示正确的是 (    )

A. ( 5 , 30 ) B. ( 8 , 10 ) C. ( 9 , 10 ) D. ( 10 , 10 )

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学平面直角坐标系试题