快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.
(1)求甲、乙两种型号的机器人每台的价格各是多少万元;
(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?
某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量 (千克)与每千克售价 (元 满足一次函数关系,其部分对应数据如下表所示:
每千克售价 (元 |
|
25 |
30 |
35 |
|
日销售量 (千克) |
|
110 |
100 |
90 |
|
(1)求 与 之间的函数关系式;
(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?
(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?
为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买 种花卉与用900元购买 种花卉的数量相等,且 种花卉每盆比 种花卉多0.5元.
(1) , 两种花卉每盆各多少元?
(2)计划购买 , 两种花卉共6000盆,其中 种花卉的数量不超过 种花卉数量的 ,求购买 种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?
甲、乙两个探测气球分别从海拔 和 处同时出发,匀速上升 .如图是甲、乙两个探测气球所在位置的海拔 (单位: 与气球上升时间 (单位: 的函数图象.
(1)求这两个气球在上升过程中 关于 的函数解析式;
(2)当这两个气球的海拔高度相差 时,求上升的时间.
数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度 时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到 时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至 时,制冷再次停止, ,按照以上方式循环进行.
同学们记录了 内15个时间点冷柜中的温度 随时间 的变化情况,制成下表:
时间 |
|
4 |
8 |
10 |
16 |
20 |
21 |
22 |
23 |
24 |
28 |
30 |
36 |
40 |
42 |
44 |
|
温度 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)通过分析发现,冷柜中的温度 是时间 的函数.
①当 时,写出一个符合表中数据的函数解析式 ;
②当 时,写出一个符合表中数据的函数解析式 ;
(2) 的值为 ;
(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当 时温度 随时间 变化的函数图象.
某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量 (件 是每件售价 (元 为正整数)的一次函数,其部分对应数据如下表所示:
每件售价 (元 |
|
15 |
16 |
17 |
18 |
|
每天销售量 (件 |
|
150 |
140 |
130 |
120 |
|
(1)求 关于 的函数解析式;
(2)若用 (元 表示工艺品厂试销该工艺品每天获得的利润,试求 关于 的函数解析式;
(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?
如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.
(1)设北京时间为 (时 ,首尔时间为 (时 ,就 ,求 关于 的函数表达式,并填写下表(同一时刻的两地时间).
北京时间 |
|
|
|
首尔时间 |
|
|
|
(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为 ,那么此时韩国首尔时间是多少?
, 两地相距 ,甲、乙两人从两地出发相向而行,甲先出发.图中 , 表示两人离 地的距离 与时间 的关系,请结合图象解答下列问题:
(1)表示乙离 地的距离与时间关系的图象是 (填 或 ;甲的速度是 ,乙的速度是 ;
(2)甲出发多少小时两人恰好相距 ?
Ⅰ号无人机从海拔 处出发,以 的速度匀速上升,Ⅱ号无人机从海拔 处同时出发,以 的速度匀速上升,经过 两架无人机位于同一海拔高度 .无人机海拔高度 与时间 的关系如图.两架无人机都上升了 .
(1)求 的值及Ⅱ号无人机海拔高度 与时间 的关系式;
(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.
李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程 (千米)与行驶时间 (小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升 千米,请根据图象解答下列问题:
(1)写出工厂离目的地的路程;
(2)求 关于 的函数表达式;
(3)当货车显示加油提醒后,问行驶时间 在怎样的范围内货车应进站加油?
国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示.
甲 |
乙 |
|
进价(元/千克) |
x |
x+4 |
售价(元/千克) |
20 |
25 |
已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.
(1)求x的值;
(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?
疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过 天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数 (万人)与各自接种时间 (天 之间的关系如图所示.
(1)直接写出乙地每天接种的人数及 的值;
(2)当甲地接种速度放缓后,求 关于 的函数解析式,并写出自变量 的取值范围;
(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.
某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约 时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度 与生长时间 (天 之间的关系大致如图所示.
(1)求 与 之间的函数关系式;
(2)当这种瓜苗长到大约 时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?
某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品 (吨),生产甲、乙两种产品获得的总利润为 (万元).
(1)求 与 之间的函数表达式;
(2)若每生产1吨甲产品需要 原料0.25吨,每生产1吨乙产品需要 原料0.5吨.受市场影响,该厂能获得的 原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.
试题篮
()