优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一次函数的应用 / 解答题
初中数学

快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.

(1)求甲、乙两种型号的机器人每台的价格各是多少万元;

(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?

来源:2018年山东省莱芜市中考数学试卷
  • 题型:未知
  • 难度:未知

某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量 y (千克)与每千克售价 x (元 ) 满足一次函数关系,其部分对应数据如下表所示:

每千克售价     x (元     )

25

30

35

日销售量     y (千克)

110

100

90

(1)求 y x 之间的函数关系式;

(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?

(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?

来源:2020年辽宁省锦州市中考数学试卷
  • 题型:未知
  • 难度:未知

为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买 A 种花卉与用900元购买 B 种花卉的数量相等,且 B 种花卉每盆比 A 种花卉多0.5元.

(1) A B 两种花卉每盆各多少元?

(2)计划购买 A B 两种花卉共6000盆,其中 A 种花卉的数量不超过 B 种花卉数量的 1 3 ,求购买 A 种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?

来源:2021年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

甲、乙两个探测气球分别从海拔 5 m 15 m 处同时出发,匀速上升 60 min .如图是甲、乙两个探测气球所在位置的海拔 y (单位: m ) 与气球上升时间 x (单位: min ) 的函数图象.

(1)求这两个气球在上升过程中 y 关于 x 的函数解析式;

(2)当这两个气球的海拔高度相差 15 m 时,求上升的时间.

来源:2020年辽宁省大连市中考数学试卷
  • 题型:未知
  • 难度:未知

数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度 20 ° C 时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到 4 ° C 时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至 20 ° C 时,制冷再次停止, ,按照以上方式循环进行.

同学们记录了 44 min 内15个时间点冷柜中的温度 y ( ° C ) 随时间 x ( min ) 的变化情况,制成下表:

时间 x / min

4

8

10

16

20

21

22

23

24

28

30

36

40

42

44

温度 y / ° C

20

10

8

5

4

8

12

16

20

10

8

5

4

a

20

(1)通过分析发现,冷柜中的温度 y 是时间 x 的函数.

①当 4 x < 20 时,写出一个符合表中数据的函数解析式  

②当 20 x < 24 时,写出一个符合表中数据的函数解析式  

(2) a 的值为  

(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当 4 x 44 时温度 y 随时间 x 变化的函数图象.

来源:2017年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量 y (件 ) 是每件售价 x (元 ) ( x 为正整数)的一次函数,其部分对应数据如下表所示:

每件售价 x (元 )

15

16

17

18

每天销售量 y (件 )

150

140

130

120

(1)求 y 关于 x 的函数解析式;

(2)若用 w (元 ) 表示工艺品厂试销该工艺品每天获得的利润,试求 w 关于 x 的函数解析式;

(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?

来源:2020年辽宁省鞍山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.

(1)设北京时间为 x (时 ) ,首尔时间为 y (时 ) ,就 0 x 12 ,求 y 关于 x 的函数表达式,并填写下表(同一时刻的两地时间).

北京时间

7 : 30

  

2 : 50

首尔时间

  

12 : 15

  

(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为 7 : 30 ,那么此时韩国首尔时间是多少?

来源:2016年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

A B 两地相距 60 km ,甲、乙两人从两地出发相向而行,甲先出发.图中 l 1 l 2 表示两人离 A 地的距离 s ( km ) 与时间 t ( h ) 的关系,请结合图象解答下列问题:

(1)表示乙离 A 地的距离与时间关系的图象是  (填 l 1 l 2 ) ;甲的速度是   km / h ,乙的速度是   km / h

(2)甲出发多少小时两人恰好相距 5 km

来源:2017年山东省青岛市中考数学试卷
  • 题型:未知
  • 难度:未知

Ⅰ号无人机从海拔 10 m 处出发,以 10 m / min 的速度匀速上升,Ⅱ号无人机从海拔 30 m 处同时出发,以 a ( m / min ) 的速度匀速上升,经过 5 min 两架无人机位于同一海拔高度 b ( m ) .无人机海拔高度 y ( m ) 与时间 x ( min ) 的关系如图.两架无人机都上升了 15 min

(1)求 b 的值及Ⅱ号无人机海拔高度 y ( m ) 与时间 x ( min ) 的关系式;

(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程 s (千米)与行驶时间 t (小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升 / 千米,请根据图象解答下列问题:

(1)写出工厂离目的地的路程;

(2)求 s 关于 t 的函数表达式;

(3)当货车显示加油提醒后,问行驶时间 t 在怎样的范围内货车应进站加油?

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示.

进价(元/千克)

x

x+4

售价(元/千克)

20

25

已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.

(1)求x的值;

(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?

来源:2021年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过 a 天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数 y (万人)与各自接种时间 x (天 ) 之间的关系如图所示.

(1)直接写出乙地每天接种的人数及 a 的值;

(2)当甲地接种速度放缓后,求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围;

(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.

来源:2021年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约 20 cm 时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度 y ( cm ) 与生长时间 x (天 ) 之间的关系大致如图所示.

(1)求 y x 之间的函数关系式;

(2)当这种瓜苗长到大约 80 cm 时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品 x (吨),生产甲、乙两种产品获得的总利润为 y (万元).

(1)求 y x 之间的函数表达式;

(2)若每生产1吨甲产品需要 A 原料0.25吨,每生产1吨乙产品需要 A 原料0.5吨.受市场影响,该厂能获得的 A 原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.

来源:2019年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为 80 % 90 %

(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?

(2)若要使这批鱼苗的总成活率不低于 85 % ,则乙种鱼苗至少购买多少条?

(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?

来源:2016年贵州省黔西南州中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学一次函数的应用解答题