优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一次函数的应用 / 解答题
初中数学

受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售."一方有难,八方支援"某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元 / 千克的价格出售.设经销商购进甲种水果 x 千克,付款 y 元, y x 之间的函数关系如图所示.

(1)直接写出当 0 x 50 x > 50 时, y x 之间的函数关系式;

(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额 w (元 ) 最少?

(3)若甲,乙两种水果的销售价格分别为40元 / 千克和36元 / 千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共 a 千克,且销售完 a 千克水果获得的利润不少于1650元,求 a 的最小值.

来源:2020年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

某食品连锁店研制出一种新式月饼,每块成本为6元.试销一段时间后发现,若每块月饼的售价不超过10元,每天可销售300块;若每块月饼的售价超过10元,每提高1元,每天的销量就会减少30块.这家食品连锁店每天需要支付因生产这种月饼而产生的其他费用(不含月饼成本)200元.设每块月饼的售价为 x (元 ) ,食品连锁店每天销售这种月饼的纯收入为 y (元 ) .(注:纯收入 = 销售额 成本 其他费用)

(1)当每块月饼售价不超过10元时,请直接写出 y x 之间的函数关系式: .当每块月饼售价超过10元时,请直接写出 y x 之间的函数关系式:  

(2)如果这种月饼每块的售价不超过12元,那么如何定价才能使该食品连锁店每天销售这种月饼的纯收入提高?最高纯收入为多少元?

来源:2016年辽宁省铁岭市中考数学试卷
  • 题型:未知
  • 难度:未知

某公司分别在 A B 两城生产同种产品,共100件. A 城生产产品的总成本 y (万元)与产品数量 x (件 ) 之间具有函数关系 y = a x 2 + bx .当 x = 10 时, y = 400 ;当 x = 20 时, y = 1000 B 城生产产品的每件成本为70万元.

(1)求 a b 的值;

(2)当 A B 两城生产这批产品的总成本的和最少时,求 A B 两城各生产多少件?

(3)从 A 城把该产品运往 C D 两地的费用分别为 m 万元 / 件和3万元 / 件;从 B 城把该产品运往 C D 两地的费用分别为1万元 / 件和2万元 / 件. C 地需要90件, D 地需要10件,在(2)的条件下,直接写出 A B 两城总运费的和的最小值(用含有 m 的式子表示).

来源:2020年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

某通讯公司就手机流量套餐推出三种方案,如下表:


A 方案

B 方案

C 方案

每月基本费用(元     )

20

56

266

每月免费使用流量(兆     )

1024

m

无限

超出后每兆收费(元     )

n

n


A B C 三种方案每月所需的费用 y (元 ) 与每月使用的流量 x (兆 ) 之间的函数关系如图所示.

(1)请写出 m n 的值.

(2)在 A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用 y (元 ) 与每月使用的流量 x (兆 ) 之间的函数关系式.

(3)在这三种方案中,当每月使用的流量超过多少兆时,选择 C 方案最划算?

来源:2021年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往 A 地240吨, B 地260吨,运费如下表(单位:元 / 吨).

目的地

生产厂

A

B

20

25

15

24

(1)求甲、乙两厂各生产了这批防疫物资多少吨?

(2)设这批物资从乙厂运往 A x 吨,全部运往 A B 两地的总运费为 y 元.求 y x 之间的函数关系式,并设计使总运费最少的调运方案;

(3)当每吨运费均降低 m ( 0 < m 15 m 为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求 m 的最小值.

来源:2020年湖北省荆州市中考数学试卷
  • 题型:未知
  • 难度:未知

某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量 y (本 ) 与每本纪念册的售价 x (元 ) 之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.

(1)请直接写出 y x 的函数关系式;

(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?

(3)设该文具店每周销售这种纪念册所获得的利润为 w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?

来源:2016年辽宁省葫芦岛市中考数学试卷
  • 题型:未知
  • 难度:未知

某校足球队需购买 A B 两种品牌的足球.已知 A 品牌足球的单价比 B 品牌足球的单价高20元,且用900元购买 A 品牌足球的数量用720元购买 B 品牌足球的数量相等.

(1)求 A B 两种品牌足球的单价;

(2)若足球队计划购买 A B 两种品牌的足球共90个,且 A 品牌足球的数量不小于 B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买 A 品牌足球 m 个,总费用为 W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?

来源:2020年湖北省恩施州中考数学试卷
  • 题型:未知
  • 难度:未知

某销售商准备在南充采购一批丝绸,经调查,用10000元采购 A 型丝绸的件数与用8000元采购 B 型丝绸的件数相等,一件 A 型丝绸进价比一件 B 型丝绸进价多100元.

(1)求一件 A 型、 B 型丝绸的进价分别为多少元?

(2)若销售商购进 A 型、 B 型丝绸共50件,其中 A 型的件数不大于 B 型的件数,且不少于16件,设购进 A 型丝绸 m 件.

①求 m 的取值范围.

②已知 A 型的售价是800元 / 件,销售成本为 2 n / 件; B 型的售价为600元 / 件,销售成本为 n / 件.如果 50 n 150 ,求销售这批丝绸的最大利润 w (元 ) n (元 ) 的函数关系式(每件销售利润 = 售价 进价 销售成本).

来源:2018年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

Ⅰ号无人机从海拔 10 m 处出发,以 10 m / min 的速度匀速上升,Ⅱ号无人机从海拔 30 m 处同时出发,以 a ( m / min ) 的速度匀速上升,经过 5 min 两架无人机位于同一海拔高度 b ( m ) .无人机海拔高度 y ( m ) 与时间 x ( min ) 的关系如图.两架无人机都上升了 15 min

(1)求 b 的值及Ⅱ号无人机海拔高度 y ( m ) 与时间 x ( min ) 的关系式;

(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程 s (千米)与行驶时间 t (小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升 / 千米,请根据图象解答下列问题:

(1)写出工厂离目的地的路程;

(2)求 s 关于 t 的函数表达式;

(3)当货车显示加油提醒后,问行驶时间 t 在怎样的范围内货车应进站加油?

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示.

进价(元/千克)

x

x+4

售价(元/千克)

20

25

已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.

(1)求x的值;

(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?

来源:2021年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过 a 天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数 y (万人)与各自接种时间 x (天 ) 之间的关系如图所示.

(1)直接写出乙地每天接种的人数及 a 的值;

(2)当甲地接种速度放缓后,求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围;

(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.

来源:2021年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约 20 cm 时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度 y ( cm ) 与生长时间 x (天 ) 之间的关系大致如图所示.

(1)求 y x 之间的函数关系式;

(2)当这种瓜苗长到大约 80 cm 时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品 x (吨),生产甲、乙两种产品获得的总利润为 y (万元).

(1)求 y x 之间的函数表达式;

(2)若每生产1吨甲产品需要 A 原料0.25吨,每生产1吨乙产品需要 A 原料0.5吨.受市场影响,该厂能获得的 A 原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.

来源:2019年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为 80 % 90 %

(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?

(2)若要使这批鱼苗的总成活率不低于 85 % ,则乙种鱼苗至少购买多少条?

(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?

来源:2016年贵州省黔西南州中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学一次函数的应用解答题