优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的性质
初中数学

如图,在平面直角坐标系中2条直线为 l 1 : y = - 3 x + 3 l 2 : y = - 3 x + 9 ,直线 l 1 x 轴于点 A ,交 y 轴于点 B ,直线 l 2 x 轴于点 D ,过点 B x 轴的平行线交 l 2 于点 C ,点 A E 关于 y 轴对称,抛物线 y = a x 2 + bx + c E B C 三点,下列判断中:

a - b + c = 0 ;② 2 a + b + c = 5 ;③抛物线关于直线 x = 1 对称;④抛物线过点 ( b , c ) ;⑤ S 四边形 ABCD = 5

其中正确的个数有 (    )

A.5B.4C.3D.2

来源:2017年湖北省恩施州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a ( x 1 ) ( x 3 ) x 轴交于 A B 两点,与 y 轴的正半轴交于点 C ,其顶点为 D

(1)写出 C D 两点的坐标(用含 a 的式子表示);

(2)设 S ΔBCD : S ΔABD = k ,求 k 的值;

(3)当 ΔBCD 是直角三角形时,求对应抛物线的解析式.

来源:2017年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = ( x a ) ( x 3 ) ( 0 < a < 3 ) 的图象与 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 D ,过其顶点 C 作直线 CP x 轴,垂足为点 P ,连接 AD BC

(1)求点 A B D 的坐标;

(2)若 ΔAOD ΔBPC 相似,求 a 的值;

(3)点 D O C B 能否在同一个圆上?若能,求出 a 的值;若不能,请说明理由.

来源:2018年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + c 的图象如图所示,若 M = 4 a + 2 b N = a b .则 M N 的大小关系为 M    N .(填“ > ”、“ = ”或“ < )

来源:2019年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = x 2 - 2 ax + a 2 - 2 a - 4 ( a 为常数)的图象与 x 轴有交点,且当 x > 3 时, y x 的增大而增大,则 a 的取值范围是 (    )

A. a - 2 B. a < 3 C. - 2 a < 3 D. - 2 a 3

来源:2020年四川省眉山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于 A B 两点,与 y 轴交于点 C ( 0 , 3 ) ,且此抛物线的顶点坐标为 M ( 1 , 4 )

(1)求此抛物线的解析式;

(2)设点 D 为已知抛物线对称轴上的任意一点,当 ΔACD ΔACB 面积相等时,求点 D 的坐标;

(3)点 P 在线段 AM 上,当 PC y 轴垂直时,过点 P x 轴的垂线,垂足为 E ,将 ΔPCE 沿直线 CE 翻折,使点 P 的对应点 P ' P E C 处在同一平面内,请求出点 P ' 坐标,并判断点 P ' 是否在该抛物线上.

来源:2016年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

将二次函数 y = - x 2 + 2 x + 3 的图象在 x 轴上方的部分沿 x 轴翻折后,所得新函数的图象如图所示.当直线 y = x + b 与新函数的图象恰有3个公共点时, b 的值为 (    )

A.

- 21 4 - 3

B.

- 13 4 - 3

C.

21 4 - 3

D.

13 4 - 3

来源:2021年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = - x 2 + 4 x + 5 图象的顶点为 D ,对称轴是直线 l ,一次函数 y = 2 5 x + 1 的图象与 x 轴交于点 A ,且与直线 DA 关于 l 的对称直线交于点 B

(1)点 D 的坐标是           

(2)直线 l 与直线 AB 交于点 C N 是线段 DC 上一点(不与点 D C 重合),点 N 的纵坐标为 n .过点 N 作直线与线段 DA DB 分别交于点 P Q ,使得 ΔDPQ ΔDAB 相似.

①当 n = 27 5 时,求 DP 的长;

②若对于每一个确定的 n 的值,有且只有一个 ΔDPQ ΔDAB 相似,请直接写出 n 的取值范围            

来源:2019年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 8 ( a 0 ) 经过点 ( - 2 , 0 )

(1)求抛物线的函数表达式和顶点坐标.

(2)直线 l 交抛物线于点 A ( - 4 , m ) B ( n , 7 ) n 为正数.若点 P 在抛物线上且在直线 l 下方(不与点 A B 重合),分别求出点 P 横坐标与纵坐标的取值范围.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知经过原点的抛物线 y = 2 x 2 + mx x 轴交于另一点 A ( 2 , 0 )

(1)求 m 的值和抛物线顶点 M 的坐标;

(2)求直线 AM 的解析式.

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( a b c 是常数, a 0 ) 经过点 ( - 1 , - 1 ) ( 0 , 1 ) ,当 x = - 2 时,与其对应的函数值 y > 1 .有下列结论:

abc > 0

②关于 x 的方程 a x 2 + bx + c - 3 = 0 有两个不等的实数根;

a + b + c > 7

其中,正确结论的个数是 (    )

A.

0

B.

1

C.

2

D.

3

来源:2021年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

二次函数 y a x 2 + bx + c a 0 的图象如图所示,有下列结论:① abc 0 ,② 4 a 2 b + c 0 ,③ a b x ax + b ,④ 3 a + c 0 ,正确的有(  )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c 的对称轴为直线 x = 1 .给出下列结论:

ac < 0

b 2 - 4 ac > 0

2 a - b = 0

a - b + c = 0

其中,正确的结论有 (    )

A.1个B.2个C.3个D.4个

来源:2020年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx ( a < 0 ) 过点 E ( 10 , 0 ) ,矩形 ABCD 的边 AB 在线段 OE 上(点 A 在点 B 的左边),点 C D 在抛物线上.设 A ( t , 0 ) ,当 t = 2 时, AD = 4

(1)求抛物线的函数表达式.

(2)当 t 为何值时,矩形 ABCD 的周长有最大值?最大值是多少?

(3)保持 t = 2 时的矩形 ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点 G H ,且直线 GH 平分矩形的面积时,求抛物线平移的距离.

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 L 1 : y = x 2 + bx + c 过点 C ( 0 , - 3 ) ,与抛物线 L 2 : y = - 1 2 x 2 - 3 2 x + 2 的一个交点为 A ,且点 A 的横坐标为2,点 P Q 分别是抛物线 L 1 L 2 上的动点.

(1)求抛物线 L 1 对应的函数表达式;

(2)若以点 A C P Q 为顶点的四边形恰为平行四边形,求出点 P 的坐标;

(3)设点 R 为抛物线 L 1 上另一个动点,且 CA 平分 PCR .若 OQ / / PR ,求出点 Q 的坐标.

来源:2019年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题