如图,顶点为 的抛物线经过坐标原点O,与x轴交于点B.
(1)求抛物线对应的二次函数的表达式;
(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证: ;
(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.
已知二次函数 的图象与它的对称轴相交于点 ,与 轴相交于点 ,其对称轴与 轴相交于点
(1)若直线 与二次函数的图象的另一个交点 在第一象限内,且 ,求这个二次函数的表达式;
(2)已知 在 轴上,且 为等腰三角形,若符合条件的点 恰好有2个,试直接写出 的值.
关于抛物线 ,下列说法错误的是( )
A.开口向上
B.与x轴有两个重合的交点
C.对称轴是直线
D.当 时,y随x的增大而减小
如图,抛物线 交 轴正半轴于点 ,直线 经过抛物线的顶点 .已知该抛物线的对称轴为直线 ,交 轴于点 .
(1)求 , 的值.
(2) 是第一象限内抛物线上的一点,且在对称轴的右侧,连接 , .设点 的横坐标为 , 的面积为 ,记 .求 关于 的函数表达式及 的范围.
如图1,抛物线 经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;
(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.
已知:二次函数 为常数).
(1)请写出该二次函数的三条性质;
(2)在同一直角坐标系中,若该二次函数的图象在 的部分与一次函数 的图象有两个交点,求 的取值范围.
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
如图,二次函数 的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数 的图象经过该二次函数图象上的点A(﹣1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足 的x的取值范围.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
已知抛物线 , , 是常数, 经过点 , ,当 时,与其对应的函数值 .有下列结论:
① ;
②关于 的方程 有两个不等的实数根;
③ .
其中,正确结论的个数是
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
二次函数 的图象如图所示,有下列结论:① ,② ,③ ,④ ,正确的有( )
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,已知抛物线 的对称轴为直线 .给出下列结论:
① ;
② ;
③ ;
④ .
其中,正确的结论有
A.1个B.2个C.3个D.4个
如图,抛物线 过点 ,矩形 的边 在线段 上(点 在点 的左边),点 , 在抛物线上.设 ,当 时, .
(1)求抛物线的函数表达式.
(2)当 为何值时,矩形 的周长有最大值?最大值是多少?
(3)保持 时的矩形 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点 , ,且直线 平分矩形的面积时,求抛物线平移的距离.
如图,在平面直角坐标系 中,抛物线 过点 ,与抛物线 的一个交点为 ,且点 的横坐标为2,点 、 分别是抛物线 、 上的动点.
(1)求抛物线 对应的函数表达式;
(2)若以点 、 、 、 为顶点的四边形恰为平行四边形,求出点 的坐标;
(3)设点 为抛物线 上另一个动点,且 平分 .若 ,求出点 的坐标.
试题篮
()