优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的性质
初中数学

如图1,在平面直角坐标系中, O 是坐标原点,抛物线 y = 3 12 x 2 3 3 x + 8 3 x 轴正半轴交于点 A ,与 y 轴交于点 B ,连接 AB ,点 M N 分别是 OA AB 的中点, Rt Δ CDE Rt Δ ABO ,且 ΔCDE 始终保持边 ED 经过点 M ,边 CD 经过点 N ,边 DE y 轴交于点 H ,边 CD y 轴交于点 G

(1)填空: OA 的长是  ABO 的度数是  度;

(2)如图2,当 DE / / AB ,连接 HN

①求证:四边形 AMHN 是平行四边形;

②判断点 D 是否在该抛物线的对称轴上,并说明理由;

(3)如图3,当边 CD 经过点 O 时,(此时点 O 与点 G 重合),过点 D DQ / / OB ,交 AB 延长线上于点 Q ,延长 ED 到点 K ,使 DK = DN ,过点 K KI / / OB ,在 KI 上取一点 P ,使得 PDK = 45 ° (点 P Q 在直线 ED 的同侧),连接 PQ ,请直接写出 PQ 的长.

来源:2017年辽宁省沈阳市中考数学试卷
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + 3 的图象与 x 轴交于 A ( 2 , 0 ) B ( 6 , 0 ) 两点,与 y 轴交于点 C ,顶点为 E ..

(1)求这个二次函数的表达式,并写出点 E 的坐标;

(2)如图①, D 是该二次函数图象的对称轴上一个动点,当 BD 的垂直平分线恰好经过点 C 时,求点 D 的坐标;

(3)如图②, P 是该二次函数图象上的一个动点,连接 OP ,取 OP 中点 Q ,连接 QC QE CE ,当 ΔCEQ 的面积为12时,求点 P 的坐标.

来源:2020年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = m x 2 + ( m 2 + 3 ) x - ( 6 m + 9 ) x 轴交于点 A B ,与 y 轴交于点 C ,已知 B ( 3 , 0 )

(1)求 m 的值和直线 BC 对应的函数表达式;

(2) P 为抛物线上一点,若 S ΔPBC = S ΔABC ,请直接写出点 P 的坐标;

(3) Q 为抛物线上一点,若 ACQ = 45 ° ,求点 Q 的坐标.

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y= x 2 +bx+3 的图象与 y 轴交于点 A ,过点 A x 轴的平行线交抛物线于另一点 B ,抛物线过点 C(1,0) ,且顶点为 D ,连接 AC BC BD CD

(1)填空: b=    

(2)点 P 是抛物线上一点,点 P 的横坐标大于1,直线 PC 交直线 BD 于点 Q .若 CQD=ACB ,求点 P 的坐标;

(3)点 E 在直线 AC 上,点 E 关于直线 BD 对称的点为 F ,点 F 关于直线 BC 对称的点为 G ,连接 AG .当点 F x 轴上时,直接写出 AG 的长.

来源:2020年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = 1 3 x 2 + bx + c 经过 A ( 2 3 0 ) B ( 0 , 2 ) 两点,点 C y 轴上, ΔABC 为等边三角形,点 D 从点 A 出发,沿 AB 方向以每秒2个单位长度的速度向终点 B 运动,设运动时间为 t ( t > 0 ) ,过点 D DE AC 于点 E ,以 DE 为边作矩形 DEGF ,使点 F x 轴上,点 G AC AC 的延长线上.

(1)求抛物线的解析式;

(2)将矩形 DEGF 沿 GF 所在直线翻折,得矩形 D ' E ' GF ,当点 D 的对称点 D ' 落在抛物线上时,求此时点 D ' 的坐标;

(3)如图2,在 x 轴上有一点 M ( 2 3 0 ) ,连接 BM CM ,在点 D 的运动过程中,设矩形 DEGF 与四边形 ABMC 重叠部分的面积为 S ,直接写出 S t 之间的函数关系式,并写出自变量 t 的取值范围.

来源:2017年辽宁省辽阳市中考数学试卷
  • 题型:未知
  • 难度:未知

某校开展了一次综合实践活动,参加该活动的每个学生持有两张宽为 6 cm ,长足够的矩形纸条.探究两张纸条叠放在一起,重叠部分的形状和面积.

如图1所示,一张纸条水平放置不动,另一张纸条与它成 45 ° 的角,将该纸条从右往左平移.

(1)写出在平移过程中,重叠部分可能出现的形状.

(2)当重叠部分的形状为如图2所示的四边形 ABCD 时,求证:四边形 ABCD 是菱形.

(3)设平移的距离为 xcm ( 0 < x 6 + 6 2 ) ,两张纸条重叠部分的面积为 sc m 2 .求 s x 的函数关系式,并求 s 的最大值.

来源:2020年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线 C 1 : y = x 2 + ax C 2 : y = x 2 + bx 相交于点 O C C 1 C 2 分别交 x 轴于点 B A ,且 B 为线段 AO 的中点.

(1)求 a b 的值;

(2)若 OC AC ,求 ΔOAC 的面积;

(3)抛物线 C 2 的对称轴为 l ,顶点为 M ,在(2)的条件下:

①点 P 为抛物线 C 2 对称轴 l 上一动点,当 ΔPAC 的周长最小时,求点 P 的坐标;

②如图2,点 E 在抛物线 C 2 上点 O 与点 M 之间运动,四边形 OBCE 的面积是否存在最大值?若存在,求出面积的最大值和点 E 的坐标;若不存在,请说明理由.

来源:2017年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 x + 1 ( a 0 ) 的对称轴为直线 x = 1

(1)求 a 的值;

(2)若点 M ( x 1 y 1 ) N ( x 2 y 2 ) 都在此抛物线上,且 - 1 < x 1 < 0 1 < x 2 < 2 .比较 y 1 y 2 的大小,并说明理由;

(3)设直线 y = m ( m > 0 ) 与抛物线 y = a x 2 - 2 x + 1 交于点 A B ,与抛物线 y = 3 ( x - 1 ) 2 交于点 C D ,求线段 AB 与线段 CD 的长度之比.

来源:2021年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + 4 ( a 0 ) 的图象经过点 A ( 4 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上一点,连接 BP AC ,交于点 Q ,过点 P PD x 轴于点 D

(1)求二次函数的表达式;

(2)连接 BC ,当 DPB = 2 BCO 时,求直线 BP 的表达式;

(3)请判断: PQ QB 是否有最大值,如有请求出有最大值时点 P 的坐标,如没有请说明理由.

来源:2021年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 C : y = a x 2 + bx + c ( a 0 ) 经过点 ( 1 , 1 ) ( 4 , 1 )

(1)求抛物线 C 的对称轴.

(2)当 a = - 1 时,将抛物线 C 向左平移2个单位,再向下平移1个单位,得到抛物线 C 1

①求抛物线 C 1 的解析式.

②设抛物线 C 1 x 轴交于 A B 两点(点 A 在点 B 的右侧),与 y 轴交于点 C ,连接 BC .点 D 为第一象限内抛物线 C 1 上一动点,过点 D DE OA 于点 E .设点 D 的横坐标为 m .是否存在点 D ,使得以点 O D E 为顶点的三角形与 ΔBOC 相似,若存在,求出 m 的值;若不存在,请说明理由.

来源:2021年湖南省邵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,一次函数 y = kx 1 的图象经过点 A ( 3 5 m ) ( m > 0 ) ,与 y 轴交于点 B .点 C 在线段 AB 上,且 BC = 2 AC ,过点 C x 轴的垂线,垂足为点 D .若 AC = CD

(1)求这个一次函数的表达式;

(2)已知一开口向下、以直线 CD 为对称轴的抛物线经过点 A ,它的顶点为 P ,若过点 P 且垂直于 AP 的直线与 x 轴的交点为 Q ( 4 5 5 0 ) ,求这条抛物线的函数表达式.

来源:2018年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = - x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,已知点 B 坐标为 ( 3 , 0 ) ,点 C 坐标为 ( 0 , 3 )

(1)求抛物线的表达式;

(2)点 P 为直线 BC 上方抛物线上的一个动点,当 ΔPBC 的面积最大时,求点 P 的坐标;

(3)如图2,点 M 为该抛物线的顶点,直线 MD x 轴于点 D ,在直线 MD 上是否存在点 N ,使点 N 到直线 MC 的距离等于点 N 到点 A 的距离?若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年四川省眉山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知一次函数 y = x + 3 的图象与 x 轴、 y 轴分别交于 A B 两点,抛物线 y = - x 2 + bx + c A B 两点,且与 x 轴交于另一点 C

(1)求 b c 的值;

(2)如图1,点 D AC 的中点,点 E 在线段 BD 上,且 BE = 2 ED ,连接 CE 并延长交抛物线于点 M ,求点 M 的坐标;

(3)将直线 AB 绕点 A 按逆时针方向旋转 15 ° 后交 y 轴于点 G ,连接 CG ,如图2, P ΔACG 内一点,连接 PA PC PG ,分别以 AP AG 为边,在他们的左侧作等边 ΔAPR ,等边 ΔAGQ ,连接 QR

①求证: PG = RQ

②求 PA + PC + PG 的最小值,并求出当 PA + PC + PG 取得最小值时点 P 的坐标.

来源:2016年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题