如图,抛物线 与 轴相交于点 和点 ,与 轴相交于点 ,作直线 .
(1)求抛物线的解析式;
(2)在直线 上方的抛物线上存在点 ,使 ,求点 的坐标;
(3)在(2)的条件下,点 的坐标为 ,点 在抛物线上,点 在直线 上.当以 , , , 为顶点的四边形是平行四边形时,请直接写出点 的坐标.
在平面直角坐标系中,抛物线 交 轴于 , 两点,交 轴于点 .
(1)求抛物线的表达式;
(2)如图,直线 与抛物线交于 , 两点,与直线 交于点 .若 是线段 上的动点,过点 作 轴的垂线,交抛物线于点 ,交直线 于点 ,交直线 于点 .
①当点 在直线 上方的抛物线上,且 时,求 的值;
②在平面内是否在点 ,使四边形 为正方形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
如图,二次函数 的图象交 轴于点 , ,交 轴于点 .点 是 轴上的一动点, 轴,交直线 于点 ,交抛物线于点 .
(1)求这个二次函数的表达式;
(2)①若点 仅在线段 上运动,如图,求线段 的最大值;
②若点 在 轴上运动,则在 轴上是否存在点 ,使以 , , , 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点 的坐标;若不存在,请说明理由.
如图,抛物线 过点 和 .点 是抛物线的顶点,点 是 轴下方抛物线上的一点,连接 , .
(1)求抛物线的解析式;
(2)如图①,当 时,求点 的坐标;
(3)如图②,在(2)的条件下,抛物线的对称轴交 轴于点 ,交线段 于点 ,点 是线段 上的动点(点 不与点 和点 重合),连接 ,将 沿 折叠,点 的对应点为点 , 与 的重叠部分为 ,在坐标平面内是否存在一点 ,使以点 , , , 为顶点的四边形是矩形?若存在,请直接写出点 的坐标,若不存在,请说明理由.
在平面直角坐标系 中,函数 和 的图象关于 轴对称,它们与直线 分别相交于点 , .
(1)如图,函数 为 ,当 时, 的长为 ;
(2)函数 为 ,当 时, 的值为 ;
(3)函数 为 ,
①当 时,求 的面积;
②若 ,函数 和 的图象与 轴正半轴分别交于点 , ,当 时,设函数 的最大值和函数 的最小值的差为 ,求 关于 的函数解析式,并直接写出自变量 的取值范围.
如图,抛物线 与 轴交于点 ,点 ,与 轴交于点 ,抛物线的对称轴为直线 ,点 坐标为 .
(1)求抛物线表达式;
(2)在抛物线上是否存在点 ,使 ,如果存在,求出点 坐标;如果不存在,请说明理由;
(3)在(2)的条件下,若点 在 轴上方,点 是直线 上方抛物线上的一个动点,求点 到直线 的最大距离;
(4)点 是线段 上的动点,点 是线段 上的动点,点 是线段 上的动点,三个动点都不与点 , , 重合,连接 , , ,得到 ,直接写出 周长的最小值.
在平面直角坐标系中,抛物线 经过点 和点 ,与 轴交于点 ,与 轴的另一交点为点 .
(1)求抛物线的解析式;
(2)如图1,连接 ,在抛物线上是否存在点 ,使得 ?若存在,请求出点 的坐标;若不存在,请说明理由;
(3)如图2,连接 ,交 轴于点 ,点 是线段 上的动点(不与点 ,点 重合),将 沿 所在直线翻折,得到 ,当 与 重叠部分的面积是 面积的 时,请直接写出线段 的长.
如图,在平面直角坐标系中,抛物线 与 轴正半轴交于点 ,且点 的坐标为 ,过点 作垂直于 轴的直线 . 是该抛物线上的任意一点,其横坐标为 ,过点 作 于点 , 是直线 上的一点,其纵坐标为 .以 , 为边作矩形 .
(1)求 的值.
(2)当点 与点 重合时,求 的值.
(3)当矩形 是正方形,且抛物线的顶点在该正方形内部时,求 的值.
(4)当抛物线在矩形 内的部分所对应的函数值 随 的增大而减小时,直接写出 的取值范围.
在平面直角坐标系中,函数 为常数)的图象与 轴交于点 .
(1)求点 的坐标.
(2)当此函数图象经过点 时,求此函数的表达式,并写出函数值 随 的增大而增大时 的取值范围.
(3)当 时,若函数 为常数)的图象的最低点到直线 的距离为2,求 的值.
(4)设 , 三个顶点的坐标分别为 、 、 .当函数 为常数)的图象与 的直角边有交点时,交点记为点 .过点 作 轴的垂线,与此函数图象的另一个交点为 与 不重合),过点 作 轴的垂线,与此函数图象的另一个交点为 .若 ,直接写出 的值.
二次函数 的图象与 轴交于 , 两点,与 轴交于点 ,顶点为 ..
(1)求这个二次函数的表达式,并写出点 的坐标;
(2)如图①, 是该二次函数图象的对称轴上一个动点,当 的垂直平分线恰好经过点 时,求点 的坐标;
(3)如图②, 是该二次函数图象上的一个动点,连接 ,取 中点 ,连接 , , ,当 的面积为12时,求点 的坐标.
在平面直角坐标系中, 为坐标原点,直线 交二次函数 的图象于点 , ,点 在该二次函数的图象上,设过点 (其中 且平行于 轴的直线交直线 于点 ,交直线 于点 ,以线段 、 为邻边作矩形 .
(1)若点 的横坐标为8.
①用含 的代数式表示 的坐标;
②点 能否落在该二次函数的图象上?若能,求出 的值;若不能,请说明理由.
(2)当 时,若点 恰好落在该二次函数的图象上,请直接写出此时满足条件的所有直线 的函数表达式.
如图,二次函数的图象与轴交于点,过点作轴的平行线交抛物线于另一点,抛物线过点,且顶点为,连接、、、.
(1)填空: ;
(2)点是抛物线上一点,点的横坐标大于1,直线交直线于点.若,求点的坐标;
(3)点在直线上,点关于直线对称的点为,点关于直线对称的点为,连接.当点在轴上时,直接写出的长.
如图所示,二次函数的图象(记为抛物线与轴交于点,与轴分别交于点、,点、的横坐标分别记为,,且.
(1)若,,且过点,求该二次函数的表达式;
(2)若关于的一元二次方程的判别式△.求证:当时,二次函数的图象与轴没有交点.
(3)若,点的坐标为,,过点作直线垂直于轴,且抛物线的的顶点在直线上,连接、、,的延长线与抛物线交于点,若,求的最小值.
某校开展了一次综合实践活动,参加该活动的每个学生持有两张宽为 ,长足够的矩形纸条.探究两张纸条叠放在一起,重叠部分的形状和面积.
如图1所示,一张纸条水平放置不动,另一张纸条与它成 的角,将该纸条从右往左平移.
(1)写出在平移过程中,重叠部分可能出现的形状.
(2)当重叠部分的形状为如图2所示的四边形 时,求证:四边形 是菱形.
(3)设平移的距离为 ,两张纸条重叠部分的面积为 .求 与 的函数关系式,并求 的最大值.
试题篮
()