如图,已知二次函数的图象过点 , ,与 轴交于另一点 ,且对称轴是直线 .
(1)求该二次函数的解析式;
(2)若 是 上的一点,作 交 于 ,当 面积最大时,求 的坐标;
(3) 是 轴上的点,过 作 轴与抛物线交于 .过 作 轴于 ,当以 , , 为顶点的三角形与以 , , 为顶点的三角形相似时,求 点的坐标.
若三个非零实数 , , 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 , , 构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若 , , 三点均在函数 为常数, 的图象上,且这三点的纵坐标 , , 构成“和谐三组数”,求实数 的值;
(3)若直线 与 轴交于点 , ,与抛物线 交于 , , , 两点.
①求证: , , 三点的横坐标 , , 构成“和谐三组数”;
②若 , ,求点 , 与原点 的距离 的取值范围.
如图,已知抛物线 经过 , 两点.
(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线 , 为常数,且 ,直线 , 为常数,且 ,若 ,则 .
解决问题:
①若直线 与直线 互相垂直,求 的值;
②抛物线上是否存在点 ,使得 是以 为直角边的直角三角形?若存在,请求出点 的坐标;若不存在,请说明理由;
(3) 是抛物线上一动点,且在直线 的上方(不与 , 重合),求点 到直线 的距离的最大值.
如图,已知抛物线 与 轴交于 , 两点,与 轴交于点 ,其中点 的坐标为
(1)求 的值及点 的坐标;
(2)试判断 的形状,并说明理由;
(3)一动点 从点 出发,以每秒2个单位的速度向点 运动,同时动点 从点 出发,以每秒1个单位的速度向点 运动(当点 运动到点 时,点 随之停止运动),设运动时间为 秒,当 为何值时 与 相似?
已知抛物线的解析式为 .
(1)当自变量 时,函数值 随 的增大而减少,求 的取值范围;
(2)如图,若抛物线的图象经过点 ,与 轴交于点 ,抛物线的对称轴与 轴交于 .
①求抛物线的解析式;
②在抛物线上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 与 轴交于 , 两点,与 轴交于点 ,且 , ,直线 与 轴交于点 ,点 是抛物线 上的一动点,过点 作 轴,垂足为 ,交直线 于点 .
(1)试求该抛物线表达式;
(2)如图(1),当点 在第三象限,四边形 是平行四边形,求 点的坐标;
(3)如图(2),过点 作 轴,垂足为 ,连接 .
①求证: 是直角三角形;
②试问当 点横坐标为何值时,使得以点 、 、 为顶点的三角形与 相似?
设 、 是任意两个实数,用 , 表示 、 两数中较大者,例如: , , , , , ,参照上面的材料,解答下列问题:
(1) , , , ;
(2)若 , ,求 的取值范围;
(3)求函数 与 的图象的交点坐标,函数 的图象如图所示,请你在图中作出函数 的图象,并根据图象直接写出 , 的最小值.
如图,已知抛物线的对称轴是 轴,且点 , 在抛物线上,点 是抛物线上不与顶点 重合的一动点,过 作 轴于 , 轴于 ,延长 交抛物线于 ,设 是 关于抛物线顶点 的对称点, 是 点关于 的对称点.
(1)求抛物线的解析式及顶点 的坐标;
(2)求证:四边形 是平行四边形;
(3)求证: ,并求出当它们的相似比为 时的点 的坐标.
如图,已知抛物线 与 轴交于点 和点 ,与 轴交于点 ,连接 交抛物线的对称轴于点 , 是抛物线的顶点.
(1)求此抛物线的解析式;
(2)直接写出点 和点 的坐标;
(3)若点 在第一象限内的抛物线上,且 ,求 点坐标.
注:二次函数 的顶点坐标为 ,
已知二次函数 的图象与 轴交于点 ,与 轴的一个交点坐标是 .
(1)求二次函数的解析式,并写出顶点 的坐标;
(2)将二次函数的图象沿 轴向左平移 个单位长度,当 时,求 的取值范围.
如图, 的直角边 在 轴上, , ,将 绕点 逆时针旋转 得到 ,抛物线 经过 、 两点.
(1)求二次函数的解析式;
(2)连接 ,点 是抛物线上一点,直线 把 的周长分成相等的两部分,求点 的坐标.
如图,抛物线 交 轴于 , 两点,交 轴于点 ,对称轴是直线 , , ,请解答下列问题:
(1)求抛物线的解析式;
(2)直接写出抛物线顶点 的坐标,并判断 与 的位置关系,不需要说明理由.
注:抛物线 的对称轴是直线 ,顶点坐标是 ,
如图,已知抛物线 的顶点为 ,与 轴相交于点 ,对称轴为直线 ,点 是线段 的中点.
(1)求抛物线的表达式;
(2)写出点 的坐标并求直线 的表达式;
(3)设动点 , 分别在抛物线和对称轴 上,当以 , , , 为顶点的四边形是平行四边形时,求 , 两点的坐标.
如图,抛物线 与 轴交于 , 两点,与 轴的正半轴交于点 ,其顶点为 .
(1)写出 , 两点的坐标(用含 的式子表示);
(2)设 ,求 的值;
(3)当 是直角三角形时,求对应抛物线的解析式.
试题篮
()