优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的性质 / 解答题
初中数学

如图1,抛物线 y 1 = a x 2 1 2 x + c x 轴交于点 A 和点 B ( 1 , 0 ) ,与 y 轴交于点 C ( 0 , 3 4 ) ,抛物线 y 1 的顶点为 G GM x 轴于点 M .将抛物线 y 1 平移后得到顶点为 B 且对称轴为直线 l 的抛物线 y 2

(1)求抛物线 y 2 的解析式;

(2)如图2,在直线 l 上是否存在点 T ,使 ΔTAC 是等腰三角形?若存在,请求出所有点 T 的坐标;若不存在,请说明理由;

(3)点 P 为抛物线 y 1 上一动点,过点 P y 轴的平行线交抛物线 y 2 于点 Q ,点 Q 关于直线 l 的对称点为 R ,若以 P Q R 为顶点的三角形与 ΔAMG 全等,求直线 PR 的解析式.

来源:2018年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - 1 2 x 2 + bx + c x 轴交于点 A ,点 B ,与 y 轴交于点 C ,抛物线的对称轴为直线 x = - 1 ,点 C 坐标为 ( 0 , 4 )

(1)求抛物线表达式;

(2)在抛物线上是否存在点 P ,使 ABP = BCO ,如果存在,求出点 P 坐标;如果不存在,请说明理由;

(3)在(2)的条件下,若点 P x 轴上方,点 M 是直线 BP 上方抛物线上的一个动点,求点 M 到直线 BP 的最大距离;

(4)点 G 是线段 AC 上的动点,点 H 是线段 BC 上的动点,点 Q 是线段 AB 上的动点,三个动点都不与点 A B C 重合,连接 GH GQ HQ ,得到 ΔGHQ ,直接写出 ΔGHQ 周长的最小值.

来源:2020年辽宁省朝阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = 1 2 x 2 + bx + c x 轴交于 A B 两点,点 B ( 3 , 0 ) ,经过点 A 的直线 AC 与抛物线的另一交点为 C ( 4 , 5 2 ) ,与 y 轴交点为 D ,点 P 是直线 AC 下方的抛物线上的一个动点(不与点 A C 重合).

(1)求该抛物线的解析式.

(2)过点 P PE AC ,垂足为点 E ,作 PF / / y 轴交直线 AC 于点 F ,设点 P 的横坐标为 t ,线段 EF 的长度为 m ,求 m t 的函数关系式.

(3)点 Q 在抛物线的对称轴上运动,当 ΔOPQ 是以 OP 为直角边的等腰直角三角形时,请直接写出符合条件的点 P 的坐标.

来源:2017年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = - 1 2 x 2 + bx + 3 2 x 轴正半轴交于点 A ,且点 A 的坐标为 ( 3 , 0 ) ,过点 A 作垂直于 x 轴的直线 l P 是该抛物线上的任意一点,其横坐标为 m ,过点 P PQ l 于点 Q M 是直线 l 上的一点,其纵坐标为 - m + 3 2 .以 PQ QM 为边作矩形 PQMN

(1)求 b 的值.

(2)当点 Q 与点 M 重合时,求 m 的值.

(3)当矩形 PQMN 是正方形,且抛物线的顶点在该正方形内部时,求 m 的值.

(4)当抛物线在矩形 PQMN 内的部分所对应的函数值 y x 的增大而减小时,直接写出 m 的取值范围.

来源:2020年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 C 的坐标为 ( 0 , - 3 ) .点 P 为抛物线 y = x 2 + bx + c 上的一个动点.过点 P PD x 轴于点 D ,交直线 BC 于点 E

(1)求 b c 的值;

(2)设点 F 在抛物线 y = x 2 + bx + c 的对称轴上,当 ΔACF 的周长最小时,直接写出点 F 的坐标;

(3)在第一象限,是否存在点 P ,使点 P 到直线 BC 的距离是点 D 到直线 BC 的距离的5倍?若存在,求出点 P 所有的坐标;若不存在,请说明理由.

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + 3 的图象与 x 轴交于 A ( 2 , 0 ) B ( 6 , 0 ) 两点,与 y 轴交于点 C ,顶点为 E ..

(1)求这个二次函数的表达式,并写出点 E 的坐标;

(2)如图①, D 是该二次函数图象的对称轴上一个动点,当 BD 的垂直平分线恰好经过点 C 时,求点 D 的坐标;

(3)如图②, P 是该二次函数图象上的一个动点,连接 OP ,取 OP 中点 Q ,连接 QC QE CE ,当 ΔCEQ 的面积为12时,求点 P 的坐标.

来源:2020年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = a x 2 + bx + c 过点 A ( 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C ,连接 AC BC ,将 ΔOBC 沿 BC 所在的直线翻折,得到 ΔDBC ,连接 OD

(1)用含 a 的代数式表示点 C 的坐标.

(2)如图1,若点 D 落在抛物线的对称轴上,且在 x 轴上方,求抛物线的解析式.

(3)设 ΔOBD 的面积为 S 1 ΔOAC 的面积为 S 2 ,若 S 1 S 2 = 2 3 ,求 a 的值.

来源:2019年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + c ( a 0 ) 经过点 P ( 3 , 0 ) Q ( 1 , 4 )

(1)求抛物线的解析式;

(2)若点 A 在直线 PQ 上,过点 A AB x 轴于点 B ,以 AB 为斜边在其左侧作等腰直角三角形 ABC

①当 Q A 重合时,求 C 到抛物线对称轴的距离;

②若 C 在抛物线上,求 C 的坐标.

来源:2021年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象与 x 轴交于点 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C

(1) b =    c =   

(2)若点 D 在该二次函数的图象上,且 S ΔABD = 2 S ΔABC ,求点 D 的坐标;

(3)若点 P 是该二次函数图象上位于 x 轴上方的一点,且 S ΔAPC = S ΔAPB ,写出点 P 的坐标.

来源:2021年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 4 x 轴于 A ( - 3 , 0 ) B ( 4 , 0 ) 两点,与 y 轴交于点 C ,连接 AC BC M 为线段 OB 上的一个动点,过点 M PM x 轴,交抛物线于点 P ,交 BC 于点 Q

(1)求抛物线的表达式;

(2)过点 P PN BC ,垂足为点 N .设 M 点的坐标为 M ( m , 0 ) ,请用含 m 的代数式表示线段 PN 的长,并求出当 m 为何值时 PN 有最大值,最大值是多少?

(3)试探究点 M 在运动过程中,是否存在这样的点 Q ,使得以 A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点 Q 的坐标;若不存在,请说明理由.

来源:2020年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点,交 y 轴于点 C ( 0 , 4 3 ) OA = 1 OB = 4 ,直线 l 过点 A ,交 y 轴于点 D ,交抛物线于点 E ,且满足 tan OAD = 3 4

(1)求抛物线的解析式;

(2)动点 P 从点 B 出发,沿 x 轴正方向以每秒2个单位长度的速度向点 A 运动,动点 Q 从点 A 出发,沿射线 AE 以每秒1个单位长度的速度向点 E 运动,当点 P 运动到点 A 时,点 Q 也停止运动,设运动时间为 t 秒.

①在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔADC ΔPQA 相似,若存在,求出 t 的值;若不存在,请说明理由.

②在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔAPQ ΔCAQ 的面积之和最大?若存在,求出 t 的值;若不存在,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx 5 y 轴于点 A ,交 x 轴于点 B ( 5 , 0 ) 和点 C ( 1 , 0 ) ,过点 A AD / / x 轴交抛物线于点 D

(1)求此抛物线的表达式;

(2)点 E 是抛物线上一点,且点 E 关于 x 轴的对称点在直线 AD 上,求 ΔEAD 的面积;

(3)若点 P 是直线 AB 下方的抛物线上一动点,当点 P 运动到某一位置时, ΔABP 的面积最大,求出此时点 P 的坐标和 ΔABP 的最大面积.

来源:2018年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 3 , 0 ) ,与 y 轴交于点 C ( 0 , 3 )

(1)求抛物线的解析式;

(2)点 P 在抛物线位于第四象限的部分上运动,当四边形 ABPC 的面积最大时,求点 P 的坐标和四边形 ABPC 的最大面积.

(3)直线 l 经过 A C 两点,点 Q 在抛物线位于 y 轴左侧的部分上运动,直线 m 经过点 B 和点 Q ,是否存在直线 m ,使得直线 l m x 轴围成的三角形和直线 l m y 轴围成的三角形相似?若存在,求出直线 m 的解析式,若不存在,请说明理由.

来源:2016年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题