如图,已知 , ,抛物线 过 、 两点,并与过 点的直线 交于点 .
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点 ,使四边形 的周长最小?若存在,求出点 的坐标,若不存在,请说明理由;
(3)点 为 轴右侧抛物线上一点,过点 作直线 的垂线,垂足为 .问:是否存在这样的点 ,使以点 、 、 为顶点的三角形与 相似,若存在,求出点 的坐标,若不存在,请说明理由.

如图,抛物线 过点 ,矩形 的边 在线段 上(点 在点 的左侧),点 、 在抛物线上, 的平分线 交 于点 ,点 是 的中点,已知 ,且 .
(1)求抛物线的解析式;
(2) 、 分别为 轴, 轴上的动点,顺次连接 、 、 、 构成四边形 ,求四边形 周长的最小值;
(3)在 轴下方且在抛物线上是否存在点 ,使 中 边上的高为 ?若存在,求出点 的坐标;若不存在,请说明理由;
(4)矩形 不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点 、 ,且直线 平分矩形的面积时,求抛物线平移的距离.

如图,抛物线 的图象经过 , , 三点.
(1)求抛物线的解析式.
(2)抛物线的顶点 与对称轴 上的点 关于 轴对称,直线 交抛物线于点 ,直线 交 于点 ,若直线 将 的面积分为 两部分,求点 的坐标.
(3) 为抛物线上的一动点, 为对称轴上动点,抛物线上是否存在一点 ,使 、 、 、 为顶点的四边形为平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.

如图,顶点为 的抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求这条抛物线对应的函数表达式;
(2)问在 轴上是否存在一点 ,使得 为直角三角形?若存在,求出点 的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点 ,满足 ,过 作 轴于点 ,设 的内心为 ,试求 的最小值.

在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,二次函数 的图象经过 , 两点,且与 轴的负半轴交于点 ,动点 在直线 下方的二次函数图象上.
(1)求二次函数的表达式;
(2)如图1,连接 , ,设 的面积为 ,求 的最大值;
(3)如图2,过点 作 于点 ,是否存在点 ,使得 中的某个角恰好等于 的2倍?若存在,直接写出点 的横坐标;若不存在,请说明理由.

如图1,在平面直角坐标系中,直线 与 轴, 轴分别交于 , 两点,抛物线 经过 , 两点,与 轴的另一交点为 .
(1)求抛物线解析式及 点坐标;
(2)若点 为 轴下方抛物线上一动点,连接 、 、 ,当点 运动到某一位置时,四边形 面积最大,求此时点 的坐标及四边形 的面积;
(3)如图2,若 点是半径为2的 上一动点,连接 、 ,当点 运动到某一位置时, 的值最小,请求出这个最小值,并说明理由.

综合与探究
如图,抛物线 与 轴交于 , 两点(点 在点 的左侧),与 轴交于点 .直线 与抛物线交于 , 两点,与 轴交于点 ,点 的坐标为 .
(1)请直接写出 , 两点的坐标及直线 的函数表达式;
(2)若点 是抛物线上的点,点 的横坐标为 ,过点 作 轴,垂足为 . 与直线 交于点 ,当点 是线段 的三等分点时,求点 的坐标;
(3)若点 是 轴上的点,且 ,求点 的坐标.

如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.

如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.

已知抛物线 经过点 、 .
(1)求抛物线的解析式;
(2)若点 在直线 上,过点 作 轴于点 ,以 为斜边在其左侧作等腰直角三角形 .
①当 与 重合时,求 到抛物线对称轴的距离;
②若 在抛物线上,求 的坐标.

如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 ,与 轴交于点 .
(1) , ;
(2)若点 在该二次函数的图象上,且 ,求点 的坐标;
(3)若点 是该二次函数图象上位于 轴上方的一点,且 ,写出点 的坐标.

如图,抛物线 交 轴于 , 两点,与 轴交于点 ,连接 , . 为线段 上的一个动点,过点 作 轴,交抛物线于点 ,交 于点 .
(1)求抛物线的表达式;
(2)过点 作 ,垂足为点 .设 点的坐标为 ,请用含 的代数式表示线段 的长,并求出当 为何值时 有最大值,最大值是多少?
(3)试探究点 在运动过程中,是否存在这样的点 ,使得以 , , 为顶点的三角形是等腰三角形.若存在,请求出此时点 的坐标;若不存在,请说明理由.

如图,在平面直角坐标系中,抛物线 交 轴于 、 两点,交 轴于点 , , ,直线 过点 ,交 轴于点 ,交抛物线于点 ,且满足 .
(1)求抛物线的解析式;
(2)动点 从点 出发,沿 轴正方向以每秒2个单位长度的速度向点 运动,动点 从点 出发,沿射线 以每秒1个单位长度的速度向点 运动,当点 运动到点 时,点 也停止运动,设运动时间为 秒.
①在 、 的运动过程中,是否存在某一时刻 ,使得 与 相似,若存在,求出 的值;若不存在,请说明理由.
②在 、 的运动过程中,是否存在某一时刻 ,使得 与 的面积之和最大?若存在,求出 的值;若不存在,请说明理由.

如图,在平面直角坐标系中,抛物线 交 轴于点 ,交 轴于点 和点 ,过点 作 轴交抛物线于点 .
(1)求此抛物线的表达式;
(2)点 是抛物线上一点,且点 关于 轴的对称点在直线 上,求 的面积;
(3)若点 是直线 下方的抛物线上一动点,当点 运动到某一位置时, 的面积最大,求出此时点 的坐标和 的最大面积.

试题篮
()