优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的性质 / 解答题
初中数学

如图,已知 A ( 2 , 0 ) B ( 4 , 0 ) ,抛物线 y = a x 2 + bx 1 A B 两点,并与过 A 点的直线 y = 1 2 x 1 交于点 C

(1)求抛物线解析式及对称轴;

(2)在抛物线的对称轴上是否存在一点 P ,使四边形 ACPO 的周长最小?若存在,求出点 P 的坐标,若不存在,请说明理由;

(3)点 M y 轴右侧抛物线上一点,过点 M 作直线 AC 的垂线,垂足为 N .问:是否存在这样的点 N ,使以点 M N C 为顶点的三角形与 ΔAOC 相似,若存在,求出点 N 的坐标,若不存在,请说明理由.

来源:2018年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y=a x 2 +bx(a>0) 过点 E(8,0) ,矩形 ABCD 的边 AB 在线段 OE 上(点 A 在点 B 的左侧),点 C D 在抛物线上, BAD 的平分线 AM BC 于点 M ,点 N CD 的中点,已知 OA=2 ,且 OA:AD=1:3

(1)求抛物线的解析式;

(2) F G 分别为 x 轴, y 轴上的动点,顺次连接 M N G F 构成四边形 MNGF ,求四边形 MNGF 周长的最小值;

(3)在 x 轴下方且在抛物线上是否存在点 P ,使 ΔODP OD 边上的高为 6 10 5 ?若存在,求出点 P 的坐标;若不存在,请说明理由;

(4)矩形 ABCD 不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点 K L ,且直线 KL 平分矩形的面积时,求抛物线平移的距离.

来源:2019年湖南省湘西州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) 的图象经过 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 6 ) 三点.

(1)求抛物线的解析式.

(2)抛物线的顶点 M 与对称轴 l 上的点 N 关于 x 轴对称,直线 AN 交抛物线于点 D ,直线 BE AD 于点 E ,若直线 BE ΔABD 的面积分为 1 : 2 两部分,求点 E 的坐标.

(3) P 为抛物线上的一动点, Q 为对称轴上动点,抛物线上是否存在一点 P ,使 A D P Q 为顶点的四边形为平行四边形?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2020年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,顶点为 M 的抛物线 y=a x 2 +bx+3 x 轴交于 A(3,0) B(-1,0) 两点,与 y 轴交于点 C

(1)求这条抛物线对应的函数表达式;

(2)问在 y 轴上是否存在一点 P ,使得 ΔPAM 为直角三角形?若存在,求出点 P 的坐标;若不存在,说明理由.

(3)若在第一象限的抛物线下方有一动点 D ,满足 DA=OA ,过 D DGx 轴于点 G ,设 ΔADG 的内心为 I ,试求 CI 的最小值.

来源:2019年山东省淄博市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,直线 y = 1 2 x 2 x 轴交于点 B ,与 y 轴交于点 C ,二次函数 y = 1 2 x 2 + bx + c 的图象经过 B C 两点,且与 x 轴的负半轴交于点 A ,动点 D 在直线 BC 下方的二次函数图象上.

(1)求二次函数的表达式;

(2)如图1,连接 DC DB ,设 ΔBCD 的面积为 S ,求 S 的最大值;

(3)如图2,过点 D DM BC 于点 M ,是否存在点 D ,使得 ΔCDM 中的某个角恰好等于 ABC 的2倍?若存在,直接写出点 D 的横坐标;若不存在,请说明理由.

来源:2018年辽宁省锦州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,直线 y=-5x+5 x 轴, y 轴分别交于 A C 两点,抛物线 y= x 2 +bx+c 经过 A C 两点,与 x 轴的另一交点为 B

(1)求抛物线解析式及 B 点坐标;

(2)若点 M x 轴下方抛物线上一动点,连接 MA MB BC ,当点 M 运动到某一位置时,四边形 AMBC 面积最大,求此时点 M 的坐标及四边形 AMBC 的面积;

(3)如图2,若 P 点是半径为2的 B 上一动点,连接 PC PA ,当点 P 运动到某一位置时, PC+ 1 2 PA 的值最小,请求出这个最小值,并说明理由.

来源:2019年山东省日照市中考数学试卷
  • 题型:未知
  • 难度:未知

综合与探究

如图,抛物线 y = 1 4 x 2 - x - 3 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C .直线 l 与抛物线交于 A D 两点,与 y 轴交于点 E ,点 D 的坐标为 ( 4 , - 3 )

(1)请直接写出 A B 两点的坐标及直线 l 的函数表达式;

(2)若点 P 是抛物线上的点,点 P 的横坐标为 m ( m 0 ) ,过点 P PM x 轴,垂足为 M PM 与直线 l 交于点 N ,当点 N 是线段 PM 的三等分点时,求点 P 的坐标;

(3)若点 Q y 轴上的点,且 ADQ = 45 ° ,求点 Q 的坐标.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + c ( a 0 ) 经过点 P ( 3 , 0 ) Q ( 1 , 4 )

(1)求抛物线的解析式;

(2)若点 A 在直线 PQ 上,过点 A AB x 轴于点 B ,以 AB 为斜边在其左侧作等腰直角三角形 ABC

①当 Q A 重合时,求 C 到抛物线对称轴的距离;

②若 C 在抛物线上,求 C 的坐标.

来源:2021年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象与 x 轴交于点 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C

(1) b =    c =   

(2)若点 D 在该二次函数的图象上,且 S ΔABD = 2 S ΔABC ,求点 D 的坐标;

(3)若点 P 是该二次函数图象上位于 x 轴上方的一点,且 S ΔAPC = S ΔAPB ,写出点 P 的坐标.

来源:2021年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 4 x 轴于 A ( - 3 , 0 ) B ( 4 , 0 ) 两点,与 y 轴交于点 C ,连接 AC BC M 为线段 OB 上的一个动点,过点 M PM x 轴,交抛物线于点 P ,交 BC 于点 Q

(1)求抛物线的表达式;

(2)过点 P PN BC ,垂足为点 N .设 M 点的坐标为 M ( m , 0 ) ,请用含 m 的代数式表示线段 PN 的长,并求出当 m 为何值时 PN 有最大值,最大值是多少?

(3)试探究点 M 在运动过程中,是否存在这样的点 Q ,使得以 A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点 Q 的坐标;若不存在,请说明理由.

来源:2020年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点,交 y 轴于点 C ( 0 , 4 3 ) OA = 1 OB = 4 ,直线 l 过点 A ,交 y 轴于点 D ,交抛物线于点 E ,且满足 tan OAD = 3 4

(1)求抛物线的解析式;

(2)动点 P 从点 B 出发,沿 x 轴正方向以每秒2个单位长度的速度向点 A 运动,动点 Q 从点 A 出发,沿射线 AE 以每秒1个单位长度的速度向点 E 运动,当点 P 运动到点 A 时,点 Q 也停止运动,设运动时间为 t 秒.

①在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔADC ΔPQA 相似,若存在,求出 t 的值;若不存在,请说明理由.

②在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔAPQ ΔCAQ 的面积之和最大?若存在,求出 t 的值;若不存在,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx 5 y 轴于点 A ,交 x 轴于点 B ( 5 , 0 ) 和点 C ( 1 , 0 ) ,过点 A AD / / x 轴交抛物线于点 D

(1)求此抛物线的表达式;

(2)点 E 是抛物线上一点,且点 E 关于 x 轴的对称点在直线 AD 上,求 ΔEAD 的面积;

(3)若点 P 是直线 AB 下方的抛物线上一动点,当点 P 运动到某一位置时, ΔABP 的面积最大,求出此时点 P 的坐标和 ΔABP 的最大面积.

来源:2018年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 3 , 0 ) ,与 y 轴交于点 C ( 0 , 3 )

(1)求抛物线的解析式;

(2)点 P 在抛物线位于第四象限的部分上运动,当四边形 ABPC 的面积最大时,求点 P 的坐标和四边形 ABPC 的最大面积.

(3)直线 l 经过 A C 两点,点 Q 在抛物线位于 y 轴左侧的部分上运动,直线 m 经过点 B 和点 Q ,是否存在直线 m ,使得直线 l m x 轴围成的三角形和直线 l m y 轴围成的三角形相似?若存在,求出直线 m 的解析式,若不存在,请说明理由.

来源:2016年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题