阅读以下材料,并解决相应问题:
小明在课外学习时遇到这样一个问题:
定义:如果二次函数 , 、 、 是常数)与 , 、 、 是常数)满足 , , ,则这两个函数互为“旋转函数”.求函数 的旋转函数,小明是这样思考的,由函数 可知, , , ,根据 , , ,求出 , , 就能确定这个函数的旋转函数.
请思考小明的方法解决下面问题:
(1)写出函数 的旋转函数.
(2)若函数 与 互为旋转函数,求 的值.
(3)已知函数 的图象与 轴交于 、 两点,与 轴交于点 ,点 、 、 关于原点的对称点分别是 、 、 ,试求证:经过点 、 、 的二次函数与 互为“旋转函数”.
已知二次函数 的图象经过点A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是( )
A. B. C. D.
已知正方形 中 、 、 、 ,有一抛物线 向下平移 个单位 与正方形 的边(包括四个顶点)有交点,则 的取值范围是 .
已知关于x的二次函数y=ax2+bx+c的图象经过点 , ,且 ,对于以下结论:① ;② ;③对于自变量x的任意一个取值,都有 ;在 中存在一个实数x0,使得 ,中结论错误的是 (只填写序号).
如图,在平面直角坐标系 中,已知抛物线 的顶点为 ,与 轴的正半轴交于点 ,它的对称轴与抛物线 交于点 .若四边形 是正方形,则 的值是 .
点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是( )
A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3
在平面直角坐标系内,已知点 ,点 都在直线 上,若抛物线 与线段 有两个不同的交点,则 的取值范围是
A. B.
B.C. 或 D.
已知二次函数 的图象经过第一象限的点 ,则一次函数 的图象不经过
A. |
第一象限 |
B. |
第二象限 |
C. |
第三象限 |
D. |
第四象限 |
在平面直角坐标系中,点 为坐标原点,抛物线 与 轴交于点 ,与 轴正半轴交于点 ,连接 ,将 向右上方平移,得到 △ ,且点 , 落在抛物线的对称轴上,点 落在抛物线上,则直线 的表达式为
A. B. C. D.
二次函数 的大致图象如图所示,顶点坐标为 ,下列结论:① ;② ;③若方程 有两个根 和 ,且 ,则 ;④若方程 有四个根,则这四个根的和为 .其中正确的结论有
A.1个B.2个C.3个D.4个
试题篮
()