优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式
初中数学

已知抛物线 y = - 1 2 x 2 + bx + c 轴交于点,与轴的两个交点分别为

(1)求抛物线的解析式;

(2)已知点在抛物线上,连接,若是以为直角边的直角三角形,求点的坐标;

(3)已知点轴上,点在抛物线上,是否存在以为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2016年福建省龙岩市中考数学试卷
  • 题型:未知
  • 难度:未知

已知,抛物线经过原点,顶点为

(1)当时,求抛物线的解析式;

(2)若抛物线也经过点,求之间的关系式;

(3)当点在抛物线上,且时,求的取值范围.

来源:2016年福建省福州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 经过点 ,交 轴于点

(1)求抛物线的解析式(用一般式表示);

(2)点 轴右侧抛物线上一点,是否存在点 使 S Δ ABC = 2 3 S Δ ABD ?若存在请直接给出点 坐标;若不存在请说明理由;

(3)将直线 绕点 顺时针旋转 ,与抛物线交于另一点 ,求 的长.

来源:2017年广东省深圳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线yax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C

(1)求此抛物线的解析式;

(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;

(3)当动点E在直线AC与抛物线围成的封闭线ACBDA上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.

来源:2016年广西梧州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直径坐标系中,抛物线yax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C

(1)直接写出抛物线的函数解析式;

(2)以OC为半径的⊙Oy轴的正半轴交于点E,若弦CDAB的中点M,试求出DC的长;

(3)将抛物线向上平移个单位长度(如图2)若动点Pxy)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.

来源:2016年广西钦州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线经过原点O,顶点为A(1,1),且与直线yx﹣2交于BC两点.

(1)求抛物线的解析式及点C的坐标;

(2)求证:△ABC是直角三角形;

(3)若点Nx轴上的一个动点,过点NMNx轴与抛物线交于点M,则是否存在以OMN为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.

来源:2016年广西南宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线yax2+b的顶点坐标为(0,﹣1),且经过点A(﹣2,0).

(1)求抛物线的解析式;

(2)若将抛物线yax2+b中在x轴下方的图象沿x轴翻折到x轴上方,x轴上方的图象保持不变,就得到了函数y=|ax2+b|图象上的任意一点P,直线l是经过(0,1)且平行与x轴的直线,过点P作直线l的垂线,垂足为D,猜想并探究:POPD的差是否为定值?如果是,请求出此定值;如果不是,请说明理由.

(注:在解题过程中,如果你觉得有困难,可以阅读下面的材料)

附阅读材料:

1.在平面直角坐标系中,若AB两点的坐标分别为Ax1y1),Bx2y2),则AB两点间的距离为 | AB | = x 1 - x 2 2 + y 1 - y 2 2 ,这个公式叫两点间距离公式.

例如:已知AB两点的坐标分别为(﹣1,2),(2,﹣2),则AB两点间的距离为 | AB | = ( - 1 - 2 ) 2 + ( 2 + 2 ) 2 = 5

2.因式分解:x4+2x2y2+y4=(x2+y22

来源:2016年广西柳州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形的边OAx轴上,边OCy轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线yax2+bx+c经过OAE三点.

(1)求此抛物线的解析式;

(2)求AD的长;

(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.

来源:2016年广西贺州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知开口向下的抛物线y1ax2﹣2ax+1过点Am,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点AB的对应点分别为点DE

(1)直接写出点ACD的坐标;

(2)当四边形ABDE是矩形时,求a的值及抛物线y2的解析式;

(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线lx轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求St的函数关系.

来源:2016年广西桂林市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线Lyax2+bx+cx轴交于AB(3,0)两点(AB的左侧),与y轴交于点C(0,3),已知对称轴x=1.

(1)求抛物线L的解析式;

(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;

(3)设点P是抛物线L上任一点,点Q在直线lx=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

来源:2016年广西北海市中考数学试卷
  • 题型:未知
  • 难度:未知

正方形OABC的边长为4,对角线相交于点P,抛物线L经过OPA三点,点E是正方形内的抛物线上的动点.

(1)建立适当的平面直角坐标系,

①直接写出OPA三点坐标;

②求抛物线L的解析式;

(2)求△OAE与△OCE面积之和的最大值.

来源:2016年广西百色市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 yax 2+2 x﹣3与 x轴交于 AB两点,且 B(1,0)

(1)求抛物线的解析式和点 A的坐标;

(2)如图1,点 P是直线 yx上的动点,当直线 yx平分∠ APB时,求点 P的坐标;

(3)如图2,已知直线 y = 2 3 x - 4 9 分别与 x轴、 y轴交于 CF两点,点 Q是直线 CF下方的抛物线上的一个动点,过点 Qy轴的平行线,交直线 CF于点 D,点 E在线段 CD的延长线上,连接 QE.问:以 QD为腰的等腰△ QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

来源:2016年广东省深圳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - 1 2 x 2 + bx + c x 轴交于点 A ( - 1 , 0 ) 和点 B ( 4 , 0 ) ,与 y 轴交于点 C ,连接 BC ,点 P 是线段 BC 上的动点(与点 B C 不重合),连接 AP 并延长 AP 交抛物线于点 Q ,连接 CQ BQ ,设点 Q 的横坐标为 m

(1)求抛物线的解析式和点 C 的坐标;

(2)当 ΔBCQ 的面积等于2时,求 m 的值;

(3)在点 P 运动过程中, PQ AP 是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

来源:2020年内蒙古呼伦贝尔市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = x 2 + bx + c x 轴于 A B 两点,其中点 A 的坐标为 ( 1 , 0 ) ,与 y 轴交于点 C ( 0 , - 3 )

(1)求抛物线的函数解析式;

(2)点 D y 轴上一点,如果直线 BD 与直线 BC 的夹角为 15 ° ,求线段 CD 的长度;

(3)如图2,连接 AC ,点 P 在抛物线上,且满足 PAB = 2 ACO ,求点 P 的坐标.

来源:2020年内蒙古鄂尔多斯市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + 9 4 x + c ( a 0 ) x 轴相交于点 A ( - 1 , 0 ) 和点 B ,与 y 轴相交于点 C ( 0 , 3 ) ,作直线 BC

(1)求抛物线的解析式;

(2)在直线 BC 上方的抛物线上存在点 D ,使 DCB = 2 ABC ,求点 D 的坐标;

(3)在(2)的条件下,点 F 的坐标为 ( 0 , 7 2 ) ,点 M 在抛物线上,点 N 在直线 BC 上.当以 D F M N 为顶点的四边形是平行四边形时,请直接写出点 N 的坐标.

来源:2020年辽宁省铁岭市、葫芦岛市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式试题