优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式
初中数学

如图,已知抛物线经过两点是抛物线与轴的交点.

(1)求抛物线的解析式;

(2)点在平面直角坐标系第一象限内的抛物线上运动,设的面积为,求关于的函数表达式(指出自变量的取值范围)和的最大值;

(3)点在抛物线上运动,点轴上运动,是否存在点、点使得,且相似,如果存在,请求出点和点的坐标.

来源:2020年贵州省铜仁市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线轴交于两点(点在点的左边),与轴交于点,顶点的坐标为

(1)求抛物线的解析式.

(2)在轴上找一点,使得为等腰三角形,请直接写出点的坐标.

(3)点轴上的动点,点是抛物线上的动点,是否存在点,使得以点为顶点,为一边的四边形是平行四边形?若存在,请求出点坐标;若不存在,请说明理由.

来源:2020年贵州省黔东南州中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线与抛物线相交轴于点,抛物线轴交于两点(点在点的右侧),直线轴负半轴于点,交轴于点,且

(1)求抛物线的解析式与的值;

(2)抛物线的对称轴交轴于点,连接,在轴上方的对称轴上找一点,使以点为顶点的三角形与相似,求出的长;

(3)如图2,过抛物线上的动点轴于点,交直线于点,若点是点关于直线的对称点,是否存在点(不与点重合),使点落在轴上?若存在,请直接写出点的横坐标,若不存在,请说明理由.

来源:2020年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于两点的右侧),且经过点和点

(1)求抛物线的函数表达式;

(2)连接,经过点的直线与线段交于点,与抛物线交于另一点.连接的面积与的面积之比为,点为直线上方抛物线上的一个动点,设点的横坐标为.当为何值时,的面积最大?并求出最大值;

(3)在抛物线上,当时,的取值范围是,求的取值范围.(直接写出结果即可)

来源:2020年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线轴于点和点,交轴于点

(1)求抛物线的解析式和顶点坐标;

(2)如图(1),点是抛物线上位于直线上方的动点,过点分别作轴、轴的平行线,交直线于点,当取最大值时,求点的坐标;

(3)如图(2),点为抛物线对称轴上一点,点为抛物线上一点,当直线垂直平分的边时,求点的坐标.

来源:2020年贵州省黔西南州中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,直线与直线相交于点,点是直线上的动点,过点于点,点的坐标为,连接.设点的纵坐标为的面积为

(1)当时,请直接写出点的坐标;

(2)关于的函数解析式为,其图象如图2所示,结合图1、2的信息,求出的值;

(3)在上是否存在点,使得是直角三角形?若存在,请求出此时点的坐标和的面积;若不存在,请说明理由.

来源:2020年广西南宁市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线与轴交于,则该抛物线的解析式可以表示为:

(1)若,抛物线与轴交于,直接写出该抛物线的解析式和顶点坐标;

(2)若,如图(1),,点在线段上,抛物线轴交于,顶点为;抛物线轴交于,顶点为.当三点在同一条直线上时,求的值;

(3)已知抛物线轴交于,线段的端点.若抛物线与线段有公共点,结合图象,在图(2)中探究的取值范围.

来源:2020年广西河池市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线过点,交轴于点和点(点在点的左侧),抛物线的顶点为,对称轴轴于点,连接

(1)直接写出的值,点的坐标和抛物线对称轴的表达式;

(2)若点是抛物线对称轴上的点,当是等腰三角形时,求点的坐标;

(3)点是抛物线上的动点,连接,将沿所在的直线对折,点落在坐标平面内的点处.求当点恰好落在直线上时点的横坐标.

来源:2020年广西桂林中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,拋物线轴交于两点,与轴交于点,且点的坐标为,点的坐标为,对称轴为直线.点是抛物线上一个动点,设点的横坐标为,连接

(1)求抛物线的函数表达式;

(2)当的面积等于的面积的时,求的值;

(3)在(2)的条件下,若点轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点为顶点的四边形是平行四边形.若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2020年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴于两点,交轴于点,且.点是第三象限内抛物线上的一动点.

(1)求此抛物线的表达式;

(2)若,求点的坐标;

(3)连接,求面积的最大值及此时点的坐标.

来源:2020年甘肃省临夏州中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 3 ( a 0 ) x 轴的交点 A ( - 3 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,顶点为 D

(1)求该抛物线的解析式;

(2)连接 AD DC CB ,将 ΔOBC 沿 x 轴以每秒1个单位长度的速度向左平移,得到△ O ' B ' C ' ,点 O B C 的对应点分别为点 O ' B ' C ' ,设平移时间为 t 秒,当点 O ' 与点 A 重合时停止移动.记△ O ' B ' C ' 与四边形 AOCD 重合部分的面积为 S ,请直接写出 S t 之间的函数关系式;

(3)如图2,过该抛物线上任意一点 M ( m , n ) 向直线 l : y = 9 2 作垂线,垂足为 E ,试问在该抛物线的对称轴上是否存在一点 F ,使得 ME - MF = 1 4 ?若存在,请求出 F 的坐标;若不存在,请说明理由.

来源:2020年广东省深圳市中考数学试卷
  • 题型:未知
  • 难度:未知

平面直角坐标系 xOy 中,抛物线 G : y = a x 2 + bx + c ( 0 < a < 12 ) 过点 A ( 1 , c - 5 a ) B ( x 1 3 ) C ( x 2 3 ) .顶点 D 不在第一象限,线段 BC 上有一点 E ,设 ΔOBE 的面积为 S 1 ΔOCE 的面积为 S 2 S 1 = S 2 + 3 2

(1)用含 a 的式子表示 b

(2)求点 E 的坐标:

(3)若直线 DE 与抛物线 G 的另一个交点 F 的横坐标为 6 a + 3 ,求 y = a x 2 + bx + c 1 < x < 6 时的取值范围(用含 a 的式子表示).

来源:2020年广东省广州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 3 + 3 6 x 2 + bx + c x 轴交于 A B 两点,点 A B 分别位于原点的左、右两侧, BO = 3 AO = 3 ,过点 B 的直线与 y 轴正半轴和抛物线的交点分别为 C D BC = 3 CD

(1)求 b c 的值;

(2)求直线 BD 的函数解析式;

(3)点 P 在抛物线的对称轴上且在 x 轴下方,点 Q 在射线 BA 上.当 ΔABD ΔBPQ 相似时,请直接写出所有满足条件的点 Q 的坐标.

来源:2020广东省中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,已知抛物线轴相交于两点(点在点的左侧),与轴交于点

(1)点的坐标为  ,点的坐标为  ,线段的长为  ,抛物线的解析式为  

(2)点是线段下方抛物线上的一个动点.

①如果在轴上存在点,使得以点为顶点的四边形是平行四边形.求点的坐标.

②如图2,过点交线段于点,过点作直线于点,交轴于点,记,求关于的函数解析式;当时,试比较的对应函数值的大小.

来源:2019年湖北省孝感市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,直线轴,轴分别交于点,点,对称轴为的抛物线过两点,且交轴于另一点,连接

(1)直接写出点,点,点的坐标和抛物线的解析式;

(2)已知点为第一象限内抛物线上一点,当点到直线的距离最大时,求点的坐标;

(3)抛物线上是否存在一点(点除外),使以点为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.

来源:2019年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式试题