如图,在直角三角形 中, ,点 是 的内心,
的延长线和三角形 的外接圆 相交于点 ,连接 .
(1)求证: ;
(2)过点 作 的平行线交 、 的延长线分别于点 、 ,已知 ,圆 的直径为5.
①求证: 为圆 的切线;
②求 的长.
如图,点 、 分别是矩形 的边 、 上一点,若 ,且 .
(1)求证:点 为 的中点;
(2)延长 与 的延长线相交于点 ,连接 ,已知 ,求 的值.
阅读下列材料:
已知:如图1,等边△ 内接于 ,点 是 上的任意一点,连接 , , ,可证: ,从而得到: 是定值.
(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;
证明:如图1,作 , 交 的延长线于点 .
△ 是等边三角形,
,
又 , ,
△ △
.
,是定值.
(2)延伸:如图2,把(1)中条件“等边△ ”改为“正方形 ”,其余条件不变,请问: 还是定值吗?为什么?
(3)拓展:如图3,把(1)中条件“等边△ ”改为“正五边形 ”,其余条件不变,则 (只写出结果).
如图, 中, , , ,点 是 边上一点且 ,点 是线段 上一动点,连接 ,以 为斜边在 的下方作等腰 .当 从点 出发运动至点 停止时,点 的运动路径长为 .
如图,平面直角坐标系中,矩形 的顶点 , , .将矩形 绕点 顺时针方向旋转,使点 恰好落在 上的点 处,则点 的对应点 的坐标为 .
如图, , 是平行四边形 对角线 上两点, .连接 , 并延长,分别交 、 于点 、 ,连接 ,则 的值为
A. B. C. D.1
如图, 的周长为19,点 , 在边 上, 的平分线垂直于 ,垂足为 , 的平分线垂直于 ,垂足为 ,若 ,则 的长度为
A. B.2C. D.3
如图,在 中, ,以 为直径的 交 于点 ,交 于点 ,过点 作 ,与过点 的切线相交于点 ,连接 .
(1)求证: ;
(2)若 , ,求 的长.
如图,在 中,过 点作 于点 ,交 于点 ,过 点作 于点 ,交 于点 .
(1)求证:四边形 是平行四边形;
(2)已知 , ,求 的长.
如图1,在平面直角坐标系, 为坐标原点,点 ,点 .
(1)求 的度数;
(2)如图1,将 绕点 顺时针旋转得△ ,当 恰好落在 边上时,设△ 的面积为 ,△ 的面积为 , 与 有何关系?为什么?
(3)若将 绕点 顺时针旋转到如图2所示的位置, 与 的关系发生变化了吗?证明你的判断.
在 中, , 是 上一点,连接 ,作 ,使 ,且 ,过点 作 交 于 ,连接 .
(1)如图1.
①连接 ,求证:
②若 是线段 的中点,且 , ,求 的长;
(2)如图2,若点 在线段 的延长线上,且四边形 是矩形,当 , 时,求 的长(用含 , 的代数式表示).
试题篮
()