优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 全等三角形的判定与性质
初中数学

如图,已知正方形的边长为边上一点(不与端点重合),将沿对折至,延长交边于点,连接

给出下列判断:

②若,则

③若的中点,则的面积为

④若,则

其中正确的是  .(写出所有正确判断的序号)

来源:2019年湖北省随州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知四边形 ABCD 为矩形,延长 CB E ,使 CE = CA ,连接 AE F AE 的中点,连接 BF DF DF AB 于点 G ,下列结论:

(1) BF DF

(2) S ΔBDG = S ΔADF

(3) E F 2 = FG · FD

(4) AG BG = BC AC

其中正确的个数是 (    )

A.1B.2C.3D.4

来源:2016年山东省莱芜市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,等腰直角三角形的直角顶点为正方形的中心,点分别在上,现将绕点逆时针旋转,连接(如图②

(1)在图②中,  ;(用含的式子表示)

(2)在图②中猜想的数量关系,并证明你的结论.

来源:2019年湖北省荆州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 中, AB = 6 G BC 的中点.将 ΔABG 沿 AG 对折至 ΔAFG ,延长 GF DC 于点 E ,则 DE 的长是 (    )

A.1B.1.5C.2D.2.5

来源:2018年湖北省仙桃市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的直径,点的延长线上,上的两点,,延长的延长线于点

(1)求证:的切线;

(2)求证:

(3)若,求弦的长.

来源:2019年湖北省黄石市中考数学试卷
  • 题型:未知
  • 难度:未知

在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.

(一)尝试探究

如图1,在四边形 ABCD 中, AB = AD BAD = 60 ° ABC = ADC = 90 ° ,点 E F 分别在线段 BC CD 上, EAF = 30 ° ,连接 EF

(1)如图2,将 ΔABE 绕点 A 逆时针旋转 60 ° 后得到△ A ' B ' E ' ( A ' B ' AD 重合),请直接写出 E ' AF =      度,线段 BE EF FD 之间的数量关系为       

(2)如图3,当点 E F 分别在线段 BC CD 的延长线上时,其他条件不变,请探究线段 BE EF FD 之间的数量关系,并说明理由.

(二)拓展延伸

如图4,在等边 ΔABC 中, E F 是边 BC 上的两点, EAF = 30 ° BE = 1 ,将 ΔABE 绕点 A 逆时针旋转 60 ° 得到△ A ' B ' E ' ( A ' B ' AC 重合),连接 EE ' AF EE ' 交于点 N ,过点 A AM BC 于点 M ,连接 MN ,求线段 MN 的长度.

来源:2016年山东省济南市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中,点 D 为边 BC 的中点,连接 AD ,将 ΔADC 沿直线 AD 翻折至 ΔABC 所在平面内,得 ΔADC ' ,连接 CC ' ,分别与边 AB 交于点 E ,与 AD 交于点 O .若 AE = BE BC ' = 2 ,则 AD 的长为   

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

在① AD = AE ,② ABE = ACD ,③ FB = FC 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.

问题:如图,在 ΔABC 中, ABC = ACB ,点 D AB 边上(不与点 A ,点 B 重合),点 E AC 边上(不与点 A ,点 C 重合),连接 BE CD BE CD 相交于点 F .若   AD = AE ( ABE = ACD FB = FC )  ,求证: BE = CD

注:如果选择多个条件分别作答,按第一个解答计分.

来源:2021年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 O ABCD 对角线的交点, EF 过点 O 分别交 AD BC 于点 E F ,下列结论成立的是 (    )

A.

OE = OF

B.

AE = BF

C.

DOC = OCD

D.

CFE = DEF

来源:2021年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° AC = BC ,点 C ( 2 , 0 ) ,点 B ( 0 , 4 ) ,反比例函数 y = k x ( x > 0 ) 的图象经过点 A

(1)求反比例函数的解析式;

(2)将直线 OA 向上平移 m 个单位后经过反比例函数 y = k x ( x > 0 ) 图象上的点 ( 1 , n ) ,求 m n 的值.

来源:2021年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在等边三角形 ABC 中,点 E 是边 AC 上一定点,点 D 是直线 BC 上一动点,以 DE 为一边作等边三角形 DEF ,连接 CF

【问题解决】

如图1,若点 D 在边 BC 上,求证: CE + CF = CD

【类比探究】

如图2,若点 D 在边 BC 的延长线上,请探究线段 CE CF CD 之间存在怎样的数量关系?并说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, E AD 的中点,延长 CE BA 交于点 F ,连接 AC DF

(1)求证:四边形 ACDF 是平行四边形;

(2)当 CF 平分 BCD 时,写出 BC CD 的数量关系,并说明理由.

来源:2018年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D E 分别是线段 BC AD 的中点,过点 A BC 的平行线交 BE 的延长线于点 F ,连接 CF

(1)求证: ΔBDE ΔFAE

(2)求证:四边形 ADCF 为矩形.

来源:2020年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, BCA = 90 ° A < ABC D AC 边上一点,且 DA = DB O AB 的中点, CE ΔBCD 的中线.

(1)如图 a ,连接 OC ,请直接写出 OCE OAC 的数量关系:    

(2)点 M 是射线 EC 上的一个动点,将射线 OM 绕点 O 逆时针旋转得射线 ON ,使 MON = ADB ON 与射线 CA 交于点 N

①如图 b ,猜想并证明线段 OM 和线段 ON 之间的数量关系;

②若 BAC = 30 ° BC = m ,当 AON = 15 ° 时,请直接写出线段 ME 的长度(用含 m 的代数式表示).

来源:2019年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题