优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 全等三角形的判定与性质
初中数学

如图,在矩形 ABCD 中,点 E 在边 BC 上,点 F BC 的延长线上,且 BE = CF

求证:(1) ΔABE ΔDCF

(2)四边形 AEFD 是平行四边形.

来源:2021年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形纸片 ABCD 中,点 E F 分别在矩形的边 AB AD 上,将矩形纸片沿 CE CF 折叠,点 B 落在 H 处,点 D 落在 G 处,点 C H G 恰好在同一直线上,若 AB = 6 AD = 4 BE = 2 ,则 DF 的长是 (    )

A.

2

B.

7 4

C.

3 2 2

D.

3

来源:2021年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,正方形 ABCD 的顶点 A x 轴正半轴上,顶点 B C 在第一象限,顶点 D 的坐标 ( 5 2 2 ) .反比例函数 y = k x (常数 k > 0 x > 0 ) 的图象恰好经过正方形 ABCD 的两个顶点,则 k 的值是   

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AD = BC AC = BD AC BD 相交于点 E .求证: DAC = CBD

来源:2021年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BAC = 90 ° AD BAC 内部一条射线,若 AB = AC BE AD 于点 E CF AD 于点 F .求证: AF = BE

来源:2021年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AB = AD = 20 BC = DC = 10 2

(1)求证: ΔABC ΔADC

(2)当 BCA = 45 ° 时,求 BAD 的度数.

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, AB = 6 M AD 边上的一点, AM : MD = 1 : 2 。将 ΔBMA 沿 BM 对折至 ΔBMN ,连接 DN ,则 DN 的长是 (    )

A.

5 2

B.

9 5 8

C.

3

D.

6 5 5

来源:2021年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC ΔDCB 中, ACB = DBC ,添加一个条件,不能证明 ΔABC ΔDCB 全等的是 (    )

A.

ABC = DCB

B.

AB = DC

C.

AC = DB

D.

A = D

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD ABCD 是矩形,其对角线 AC BD 交于点 E ,连接 OE AD 于点 F

(1)求证: ΔOAF ΔDAB

(2)求 DF AF 的值.

来源:2021年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中,点 D 为边 BC 的中点,连接 AD ,将 ΔADC 沿直线 AD 翻折至 ΔABC 所在平面内,得 ΔADC ' ,连接 CC ' ,分别与边 AB 交于点 E ,与 AD 交于点 O .若 AE = BE BC ' = 2 ,则 AD 的长为   

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, A = 60 ° ,点 E F 分别在边 AB BC 上, AE = BF = 2 ΔDEF 的周长为 3 6 ,则 AD 的长为 (    )

A.

6

B.

2 3

C.

3 + 1

D.

2 3 - 1

来源:2021年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

在① AD = AE ,② ABE = ACD ,③ FB = FC 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.

问题:如图,在 ΔABC 中, ABC = ACB ,点 D AB 边上(不与点 A ,点 B 重合),点 E AC 边上(不与点 A ,点 C 重合),连接 BE CD BE CD 相交于点 F .若   AD = AE ( ABE = ACD FB = FC )  ,求证: BE = CD

注:如果选择多个条件分别作答,按第一个解答计分.

来源:2021年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 O ABCD 对角线的交点, EF 过点 O 分别交 AD BC 于点 E F ,下列结论成立的是 (    )

A.

OE = OF

B.

AE = BF

C.

DOC = OCD

D.

CFE = DEF

来源:2021年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题