优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 全等三角形的判定与性质
初中数学

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O ,点 E F 是对角线 AC 上的两点,且 AE = CF .连接 DE DF BE BF

(1)证明: ΔADE ΔCBF

(2)若 AB = 4 2 AE = 2 ,求四边形 BEDF 的周长.

来源:2021年湖南省邵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AD = BC BD = AC .求证: ADB = BCA

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB BC CD DE 是四根长度均为 5 cm 的火柴棒,点 A C E 共线.若 AC = 6 cm CD BC ,则线段 CE 的长度是 (    )

A.

6 cm

B.

7 cm

C.

6 2 cm

D.

8 cm

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AC BAE 的平分线,点 D 是线段 AC 上的一点, C = E AB = AD .求证: BC = DE

来源:2020年云南省昆明市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 4 × 4 的正方形网格中,每个小正方形的边长都为1, E BD 与正方形网格线的交点,下列结论正确的是 (    )

A.

CE 1 2 BD

B.

ΔABC ΔCBD

C.

AC = CD

D.

ABC = CBD

来源:2021年湖北省恩施州中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, D BC 边上的一点, AD = AC ,以线段 AD 为边作 ΔADE ,使得 AE = AB BAE = CAD .求证: DE = CB

来源:2020年西藏中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD ABCD 是矩形,其对角线 AC BD 交于点 E ,连接 OE AD 于点 F

(1)求证: ΔOAF ΔDAB

(2)求 DF AF 的值.

来源:2021年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

综合与实践

问题情境:

如图①,点 E 为正方形 ABCD 内一点, AEB = 90 ° ,将 Rt Δ ABE 绕点 B 按顺时针方向旋转 90 ° ,得到 ΔCBE ' (点 A 的对应点为点 C ) .延长 AE CE ' 于点 F ,连接 DE

猜想证明:

(1)试判断四边形 B E ' FE 的形状,并说明理由;

(2)如图②,若 DA = DE ,请猜想线段 CF F E ' 的数量关系并加以证明;

解决问题:

(3)如图①,若 AB = 15 CF = 3 ,请直接写出 DE 的长.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB CD 于点 O ,在 ΔAOC ΔBOD 中,有下列三个条件:① OC = OD ,② AC = BD ,③ A = B .请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).

(1)你选的条件为     ,结论为   

(2)证明你的结论.

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中,点 D 为边 BC 的中点,连接 AD ,将 ΔADC 沿直线 AD 翻折至 ΔABC 所在平面内,得 ΔADC ' ,连接 CC ' ,分别与边 AB 交于点 E ,与 AD 交于点 O .若 AE = BE BC ' = 2 ,则 AD 的长为   

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

在① AD = AE ,② ABE = ACD ,③ FB = FC 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.

问题:如图,在 ΔABC 中, ABC = ACB ,点 D AB 边上(不与点 A ,点 B 重合),点 E AC 边上(不与点 A ,点 C 重合),连接 BE CD BE CD 相交于点 F .若   AD = AE ( ABE = ACD FB = FC )  ,求证: BE = CD

注:如果选择多个条件分别作答,按第一个解答计分.

来源:2021年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 O ABCD 对角线的交点, EF 过点 O 分别交 AD BC 于点 E F ,下列结论成立的是 (    )

A.

OE = OF

B.

AE = BF

C.

DOC = OCD

D.

CFE = DEF

来源:2021年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° AC = BC ,点 C ( 2 , 0 ) ,点 B ( 0 , 4 ) ,反比例函数 y = k x ( x > 0 ) 的图象经过点 A

(1)求反比例函数的解析式;

(2)将直线 OA 向上平移 m 个单位后经过反比例函数 y = k x ( x > 0 ) 图象上的点 ( 1 , n ) ,求 m n 的值.

来源:2021年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在等边三角形 ABC 中,点 E 是边 AC 上一定点,点 D 是直线 BC 上一动点,以 DE 为一边作等边三角形 DEF ,连接 CF

【问题解决】

如图1,若点 D 在边 BC 上,求证: CE + CF = CD

【类比探究】

如图2,若点 D 在边 BC 的延长线上,请探究线段 CE CF CD 之间存在怎样的数量关系?并说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题