如图1,在四边形 中, , , ,垂足分别为 , , , ,点 , , 分别为 , , 的中点,连接 , , .
(1)如图2,当 , , 时,求 的值;
(2)若 , ,则可求出图中哪些线段的长?写出解答过程;
(3)连接 , , , .试证明 与 全等;
(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.
矩形 与 如图放置,点 , , 共线,点 , , 共线,连接 ,取 的中点 ,连接 .若 , ,则
A.1B. C. D.
在矩形 中, , 是边 上一点,把 沿直线 折叠,顶点 的对应点是点 ,过点 作 ,垂足为 且在 上, 交 于点 .
(1)如图1,若点 是 的中点,求证: ;
(2)如图2,①求证: ;
②当 ,且 时,求 的值;
③当 时,求 的值.
如图,在平面直角坐标系中,正方形 的顶点 的坐标为 ,点 在 轴正半轴上,点 在第三象限的双曲线 上,过点 作 轴交双曲线于点 ,连接 ,则 的面积为 .
如图, 是等边三角形, 是等腰直角三角形, , 于点 ,连 分别交 , 于点 , ,过点 作 交 于点 .则下列结论:① ;② ;③ ;④ ;⑤ .其中正确结论的个数为
A.5B.4C.3D.2
如图, 是 的直径, 和 是 的两条切线, 为 上一点,过点 作直线 分别交 , 于点 , ,且 .
(1)求证: ;
(2)若 , ,求图中阴影部分的面积.
已知: .
求作: ,使
(1)如图1,以点 为圆心,任意长为半径画弧,分别交 , 于点 、 ;
(2)如图2,画一条射线 ,以点 为圆心, 长为半径画弧,交 于点 ;
(3)以点 为圆心, 长为半径画弧,与第2步中所画的弧交于点 ;
(4)过点 画射线 ,则 .
根据以上作图步骤,请你证明 .
问题:如图①,在 中, , 为 边上一点(不与点 , 重合),将线段 绕点 逆时针旋转 得到 ,连接 ,则线段 , , 之间满足的等量关系式为 ;
探索:如图②,在 与 中, , ,将 绕点 旋转,使点 落在 边上,试探索线段 , , 之间满足的等量关系,并证明你的结论;
应用:如图③,在四边形 中, .若 , ,求 的长.
如图,正方形 中, , 是 的中点.将 沿 对折至 ,延长 交 于点 ,则 的长是
A.1B.1.5C.2D.2.5
已知点 在双曲线 上且 ,过点 作 轴的垂线,垂足为 .
(1)如图1,当 时, 是 轴上的动点,将点 绕点 顺时针旋转 至点 .
①若 ,直接写出点 的坐标;
②若双曲线 经过点 ,求 的值.
(2)如图2,将图1中的双曲线 沿 轴折叠得到双曲线 ,将线段 绕点 旋转,点 刚好落在双曲线 上的点 处,求 和 的数量关系.
如图, 是 的切线, 是切点, 是直径, 是弦,连接 、 , 交 于点 ,且 .
(1)求证: 是 的切线;
(2)若 ,求 的值.
试题篮
()