如图,在△ABC中,∠C=90°,AC=BC=2,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF的周长不变;
③点C到线段EF的最大距离为1.
其中正确的结论有__________(填写所有正确结论的序号)
如图,P为等腰△ABC的顶角A的外角平分线上任一点,连接PB,PC.
(1)求证:PB+PC>2AB.
(2)当PC=2,PB=,∠ACP=45°时,求AB的长.
数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:
小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.
根据以上情境,解决下列问题:
①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.
②小聪的作法正确吗?请说明理由.
③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)
两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小明在探究筝形的性质时,得到如下结论:
①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有( )
A.①② | B.①③ | C.②③ | D.①②③ |
如图,在ΔABC与ΔDCB 中,AC与BD 交于点E,且,∠A=∠D,AB=DC.
(1)求证:ΔABE≌ΔDCE
(2)当∠AEB=70°时,求∠EBC的度数.
雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.
如图,等腰,,,于点,点是延长线上一点,点是线段上一点,,下面结论:
①;
②是等边三角形;
③;
④.
其中正确的是( )
A.②③ | B.①②④ | C.③④ | D.①②③④ |
画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.
(1)尺规作图(不写作法,保留作图痕迹):
作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接OE、CF、DF.
(2)在所画图中,线段OE与CD之间有怎样的数量关系,线段DF与CF之间有怎样的数量关系,并说明理由.
如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间有一定的数量关系,请你写出∠OEP与∠ODP所有可能的数量关系是 .
(年贵州省贵阳市)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=.
(1)求AC的长度;
(2)求图中阴影部分的面积.(计算结果保留根号)
试题篮
()