感知:如图1,平分.,,易知:.
探究:如图2,平分,,,求证:.
应用:如图3,四边形中,,,,则 (用含的代数式表示)
如图,点为中点,分别延长到点,到点,使.以点为圆心,分别以,为半径在上方作两个半圆.点为小半圆上任一点(不与点,重合),连接并延长交大半圆于点,连接,.
(1)①求证:;
②写出,和三者间的数量关系,并说明理由.
(2)若,当最大时,直接指出与小半圆的位置关系,并求此时(答案保留.
如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为的内心.
(1)求证:;
(2)设,请用含的式子表示,并求的最大值;
(3)当时,的取值范围为,分别直接写出,的值.
如图,直角坐标系中,一次函数的图象分别与,轴交于,两点,正比例函数的图象与交于点.
(1)求的值及的解析式;
(2)求的值;
(3)一次函数的图象为,且,,不能围成三角形,直接写出的值.
如图,,为中点,点为射线上(不与点重合)的任意一点,连接,并使的延长线交射线于点,设.
(1)求证:;
(2)当时,求的度数;
(3)若的外心在该三角形的内部,直接写出的取值范围.
平面内,如图,在中,,,,点为边上任意点,连接,将绕点逆时针旋转得到线段.
(1)当时,求的大小;
(2)当时,求点与点间的距离(结果保留根号);
(3)若点恰好落在的边所在的直线上,直接写出旋转到所扫过的面积.(结果保留
如图,,为中点,点在线段上(不与点,重合),将绕点逆时针旋转后得到扇形,,分别切优弧于点,,且点,在异侧,连接.
(1)求证:;
(2)当时,求的长(结果保留;
(3)若的外心在扇形的内部,求的取值范围.
已知,为射线上一定点,,为射线上一点,为线段上一动点,连接,满足为钝角,以点为中心,将线段顺时针旋转,得到线段,连接.
(1)依题意补全图1;
(2)求证:;
(3)点关于点的对称点为,连接.写出一个的值,使得对于任意的点总有,并证明.
如图,在正方形中,是边上的一动点(不与点、重合),连接,点关于直线的对称点为,连接并延长交于点,连接,过点作交的延长线于点,连接.
(1)求证:;
(2)用等式表示线段与的数量关系,并证明.
如图,是的直径,过外一点作的两条切线,,切点分别为,,连接,.
(1)求证:;
(2)连接,,若,,,求的长.
在等腰直角中,,是线段上一动点(与点、不重合),连接,延长至点,使得,过点作于点,交于点.
(1)若,求的大小(用含的式子表示).
(2)用等式表示线段与之间的数量关系,并证明.
在等边 中,
(1)如图1, , 是 边上的两点, , ,求 的度数;
(2)点 , 是 边上的两个动点(不与点 , 重合),点 在点 的左侧,且 ,点 关于直线 的对称点为 ,连接 , .
①依题意将图2补全;
②小茹通过观察、实验提出猜想:在点 , 运动的过程中,始终有 ,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明 ,只需证 是等边三角形;
想法2:在 上取一点 ,使得 ,要证明 ,只需证 ;
想法3:将线段 绕点 顺时针旋转 ,得到线段 ,要证 ,只需证 ,
请你参考上面的想法,帮助小茹证明 (一种方法即可).
试题篮
()