如图,已知 是 的直径, 是 延长线上一点, 切 于点 , 是 的弦, ,垂足为 .
(1)求证: .
(2)过点 作 交 于点 ,交 于点 ,连接 ,若 , ,求 的长.
如图, 是半圆 的直径, , 是半圆 上不同于 , 的两点, , 与 相交于点 . 是半圆 所在圆的切线,与 的延长线相交于点 .
(1)求证: ;
(2)若 ,求证: 平分 .
如图,在 中, ,以 为直径的 交 于点 ,交 于点 ,过点 作 ,与过点 的切线相交于点 ,连接 .
(1)求证: ;
(2)若 , ,求 的长.
如图,在 中, ,点 是 边长一点, ,垂足为点 ,点 在线段 的延长线上,且 经过 , 两点.
(1)判断直线 与 的位置关系,并说明理由;
(2)若 的半径为2, 的长为 ,请求出 的度数.
如图, 是半圆 的直径, 是半圆上的一点, 平分 交半圆于点 ,过点 作 与 的延长线交于点 .
(1)求证: 是半圆的切线;
(2)若 , ,求半圆的直径.
综合与实践
问题情境:
如图①,点 为正方形 内一点, ,将 绕点 按顺时针方向旋转 ,得到 (点 的对应点为点 .延长 交 于点 ,连接 .
猜想证明:
(1)试判断四边形 的形状,并说明理由;
(2)如图②,若 ,请猜想线段 与 的数量关系并加以证明;
解决问题:
(3)如图①,若 , ,请直接写出 的长.
如图, 中, ,将 绕点 顺时针旋转得到 ,点 落在线段 上,连接 .
(1)求证: 平分 ;
(2)试判断 与 的位置关系,并说明理由;
(3)若 ,求 的值.
如图,在 中, ,点 , 分别在边 , 上, ,连结 , .
(1)若 ,求 , 的度数;
(2)写出 与 之间的关系,并说明理由.
如图,四边形 为矩形, 是对角线 的中点.连接 并延长至 ,使 ,以 , 为邻边作菱形 ,连接 .
(1)判断四边形 的形状,并证明你的结论.
(2)连接 ,若 ,求 的长.
已知 , , 为直线 上一点, 为直线 上一点, ,设 , .
(1)如图,若点 在线段 上,点 在线段 上.
①如果 , ,那么 , .
②求 , 之间的关系式.
(2)是否存在不同于以上②中的 , 之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.
如图, 中, ,点 是线段 延长线上一点, ,垂足为 , 交线段 于点 ,点 在线段 上, 经过 、 两点,交 于点 .
(1)求证: 是 的切线;
(2)若 , , ,求 的半径.
如图, , 平分 ,且交 于点 , 平分 ,且交 于点 , 与 相交于点 ,连接
(1)求 的度数;
(2)求证:四边形 是菱形.
如图, 是 的直径, 为弦, 的平分线交 于点 ,过点 的切线交 的延长线于点 .
求证:(1) ;
(2) .
如图,在 中, , 于点 , 于点 ,以点 为圆心, 为半径作半圆,交 于点 .
(1)求证: 是 的切线;
(2)若点 是 的中点, ,求图中阴影部分的面积;
(3)在(2)的条件下,点 是 边上的动点,当 取最小值时,直接写出 的长.
试题篮
()