实践操作:
第一步:如图1,将矩形纸片 沿过点 的直线折叠,使点 落在 上的点 处,得到折痕 ,然后把纸片展平.
第二步:如图2,将图1中的矩形纸片 沿过点 的直线折叠,点 恰好落在 上的点 处,点 落在点 处,得到折痕 , 交 于点 , 交 于点 ,再把纸片展平.
问题解决:
(1)如图1,填空:四边形 的形状是 ;
(2)如图2,线段 与 是否相等?若相等,请给出证明;若不等,请说明理由;
(3)如图2,若 , ,求 的值.
(1)如图(1),已知 与 交于点 , , .求证: .
(2)如图(2),已知 的延长线与 交于点 , , .探究 与 的数量关系,并说明理由.
如图,抛物线 为常数, 与 轴交于 , 两点,点 为抛物线的顶点,点 的坐标为 , ,连接 并延长与过 , , 三点的 相交于点 .
(1)求点 的坐标;
(2)过点 作 的切线 交 轴于点 .
①如图1,求证: ;
②如图2,连接 , , ,当 , 时,求 的值.
抛物线 与 轴交于点 , (点 在点 的左边),与 轴交于点 ,点 是该抛物线的顶点.
(1)如图1,连接 ,求线段 的长;
(2)如图2,点 是直线 上方抛物线上一点, 轴于点 , 与线段 交于点 ;将线段 沿 轴左右平移,线段 的对应线段是 ,当 的值最大时,求四边形 周长的最小值,并求出对应的点 的坐标;
(3)如图3,点 是线段 的中点,连接 ,将 沿直线 翻折至△ 的位置,再将△ 绕点 旋转一周,在旋转过程中,点 , 的对应点分别是点 , ,直线 分别与直线 , 轴交于点 , .那么,在△ 的整个旋转过程中,是否存在恰当的位置,使 是以 为腰的等腰三角形?若存在,请直接写出所有符合条件的线段 的长;若不存在,请说明理由.
如图, 是 的直径, 于点 ,连接 交 于点 ,过点 作 的切线交 于点 ,连接 交 于点 .
(1)求证: ;
(2)连接 并延长,交 于点 .填空:
①当 的度数为 时,四边形 为菱形;
②当 的度数为 时,四边形 为正方形.
如图,在 中, ,以 为直径的 交 边于点 ,过点 作 ,与过点 的切线交于点 ,连接 .
(1)求证: ;
(2)若 , ,求 的长.
如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?
如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.
(1)求证:△ADE是等腰三角形;
(2)若AD=2,求BE的长.
如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?
如图.等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.
(1)试判定△ODE的形状.并说明你的理由;
(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.
试题篮
()