在平面直角坐标系中,点 的坐标为 , ,点 在直线 上,过点 作 的垂线,过原点 作直线 的垂线,两垂线相交于点 .
(1)如图,点 , 分别在第三、二象限内, 与 相交于点 .
①若 ,求证: .
②若 ,求四边形 的面积.
(2)是否存在点 ,使得以 , , 为顶点的三角形与 相似?若存在,求 的长;若不存在,请说明理由.
如图,在 中, 的平分线 交 边于点 , 于点 .已知 , .
(1)求证: ;
(2)若 ,求 的面积.
如图, 由 绕点 按逆时针方向旋转 得到,且点 的对应点 恰好落在 的延长线上, , 相交于点 .
(1)求 的度数;
(2) 是 延长线上的点,且 .
①判断 和 的数量关系,并证明;
②求证: .
如图,在矩形 中,点 是 上的一个动点,连接 ,作点 关于 的对称点 ,且点 落在矩形 的内部,连接 , , ,过点 作 交 于点 ,设 .
(1)求证: ;
(2)当点 落在 上时,用含 的代数式表示 的值;
(3)若 ,且以点 , , 为顶点的三角形是直角三角形,求 的值.
已知: 内接于 , 是 的直径,作 于 ,交 于 ,延长 交直线 于 ,且 ,求证:
(1) 是 的切线;
(2) 是等腰三角形.
有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数 与 的图象性质.
小明根据学习函数的经验,对函数 与 ,当 时的图象性质进行了探究.
下面是小明的探究过程:
(1)如图所示,设函数 与 图象的交点为 , ,已知 点的坐标为 ,则 点的坐标为 ;
(2)若点 为第一象限内双曲线上不同于点 的任意一点.
①设直线 交 轴于点 ,直线 交 轴于点 .求证: .
证明过程如下:设 ,直线 的解析式为 .
则 ,
解得
直线 的解析式为
请你把上面的解答过程补充完整,并完成剩余的证明.
②当 点坐标为 , 时,判断 的形状,并用 表示出 的面积.
如图,菱形 的顶点 在 轴正半轴上,边 在 轴上,且 , ,反比例函数 的图象分别与 , 交于点 、点 ,点 的坐标是 ,连接 , .
(1)求反比例函数的解析式;
(2)求证: 是等腰三角形.
如图,在 中, , ,动点 从点 出发以 的速度沿 匀速运动,同时动点 从点 出发以 的速度沿 匀速运动,当点 到达点 时,点 、 同时停止运动,设运动时间为 .
(1)当 为何值时,点 在线段 的垂直平分线上?
(2)是否存在某一时刻 ,使 是以 为腰的等腰三角形?若存在,求出 的值;若不存在,请说明理由;
(3)以 为边,往 方向作正方形 ,设四边形 的面积为 ,求 关于 的函数关系式.
如图, 是半圆 的直径, 是 延长线上的点, 的垂直平分线交半圆于点 ,交 于点 ,连接 , .已知半圆 的半径为3, .
(1)求 的长.
(2)点 是线段 上一动点,连接 ,作 , 交线段 于点 .当 为等腰三角形时,求 的长.
如图,矩形 ABCD中, AB> AD,把矩形沿对角线 AC所在直线折叠,使点 B落在点 E处, AE交 CD于点 F,连接 DE.
(1)求证:△ ADE≌△ CED;
(2)求证:△ DEF是等腰三角形.
如图,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);
(2)在(1)的图形中,找出两条相等的线段,并予以证明.
试题篮
()