问题提出
(1)如图①,在中,,,则的外接圆半径的值为 .
问题探究
(2)如图②,的半径为13,弦,是的中点,是上一动点,求的最大值.
问题解决
(3)如图③所示,、、是某新区的三条规划路,其中,,,所对的圆心角为,新区管委会想在路边建物资总站点,在,路边分别建物资分站点、,也就是,分别在、线段和上选取点、、.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路、和.为了快捷、环保和节约成本.要使得线段、、之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)
我们定义:如图1,在中,把绕点顺时针旋转得到,把绕点逆时针旋转得到,连接.当时,我们称△是的“旋补三角形”,△ 边上的中线叫做的“旋补中线”,点叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△是的“旋补三角形”, 是的“旋补中线”.
①如图2,当为等边三角形时,与的数量关系为 ;
②如图3,当,时,则长为 .
猜想论证:
(2)在图1中,当为任意三角形时,猜想与的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形,,,,,.在四边形内部是否存在点,使是的“旋补三角形”?若存在,给予证明,并求的“旋补中线”长;若不存在,说明理由.
如图,将半径为2,圆心角为 的扇形 绕点 逆时针旋转 ,点 , 的对应点分别为 , ,连接 ,则图中阴影部分的面积是
A. |
|
B. |
|
C. |
|
D. |
|
如图,为半圆的直径,点为半圆上任一点.
(1)若,过点作半圆的切线交直线于点.求证:;
(2)若,过点作的平行线交半圆于点.当以点,,,为顶点的四边形为菱形时,求的长.
如图,在 中, ,点 是 的中点,以 为直径作 分别交 , 于点 , .
(1)求证: ;
(2)填空:
①若 ,当 时, ;
②连接 , ,当 的度数为 时,四边形 是菱形.
如图, 内接于圆 ,且 ,延长 到点 ,使 ,连接 交圆 于点 .
(1)求证: ;
(2)填空:
①当 的度数为 时,四边形 是菱形.
②若 , ,则 的长为 .
已知锐角 ,如图,
(1)在射线 上取一点 ,以点 为圆心, 长为半径作 ,交射线 于点 ,连接 ;
(2)分别以点 , 为圆心, 长为半径作弧,交 于点 , ;
(3)连接 , .
根据以上作图过程及所作图形,下列结论中错误的是
A. |
|
B. |
若 .则 |
C. |
|
D. |
|
在等边 中,
(1)如图1, , 是 边上的两点, , ,求 的度数;
(2)点 , 是 边上的两个动点(不与点 , 重合),点 在点 的左侧,且 ,点 关于直线 的对称点为 ,连接 , .
①依题意将图2补全;
②小茹通过观察、实验提出猜想:在点 , 运动的过程中,始终有 ,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明 ,只需证 是等边三角形;
想法2:在 上取一点 ,使得 ,要证明 ,只需证 ;
想法3:将线段 绕点 顺时针旋转 ,得到线段 ,要证 ,只需证 ,
请你参考上面的想法,帮助小茹证明 (一种方法即可).
如图1,,分别在射线,上,且为钝角,现以线段,为斜边向的外侧作等腰直角三角形,分别是,,点,,分别是,,的中点.
(1)求证:;
(2)延长,交于点.
①如图2,若,求证:为等边三角形;
②如图3,若,求大小和的值.
如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABD和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN.
试判断△BMN的形状,并说明理由.
如图.等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.
(1)试判定△ODE的形状.并说明你的理由;
(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.
试题篮
()