如图,,点在边上,,点为边上一动点,连接,△与关于所在直线对称,点,分别为,的中点,连接并延长交所在直线于点,连接.当△为直角三角形时,的长为 .
如图,已知的顶点,,点在轴正半轴上按以下步骤作图:①以点为圆心,适当长度为半径作弧,分别交边,于点,;②分别以点,为圆心,大于的长为半径作弧,两弧在内交于点;③作射线,交边于点,则点的坐标为
A.,B.,C.,D.,
我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形 的边 在 轴上, 的中点是坐标原点 ,固定点 , ,把正方形沿箭头方向推,使点 落在 轴正半轴上点 处,则点 的对应点 的坐标为
A. |
, |
B. |
|
C. |
|
D. |
|
如图,在矩形中,,,为边上一点,,连接.动点、从点同时出发,点以的速度沿向终点运动;点以的速度沿折线向终点运动.设点运动的时间为,在运动过程中,点,点经过的路线与线段围成的图形面积为.
(1) , ;
(2)求关于的函数解析式,并写出自变量的取值范围;
(3)当时,直接写出的值.
如图,在中,,,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动.当点不与点、重合时,过点作于点,连结,以、为邻边作.设与重叠部分图形的面积为,点的运动时间为秒.
(1)①的长为 ;
②的长用含的代数式表示为 .
(2)当为矩形时,求的值;
(3)当与重叠部分图形为四边形时,求与之间的函数关系式;
(4)当过点且平行于的直线经过一边中点时,直接写出的值.
如图,直线 是 的切线, 为切点, 为直线 上一点,连接 交 于点 .若 , ,则 的长为
A. |
5 |
B. |
6 |
C. |
7 |
D. |
8 |
如图是用三块正方形纸片以顶点相连的方式设计的"毕达哥拉斯"图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是
A. |
1,4,5 |
B. |
2,3,5 |
C. |
3,4,5 |
D. |
2,2,4 |
如图,从笔直的公路 旁一点 出发,向西走 到达 ;从 出发向北走 也到达 .下列说法错误的是
A. |
从点 向北偏西 走 到达 |
B. |
公路 的走向是南偏西 |
C. |
公路 的走向是北偏东 |
D. |
从点 向北走 后,再向西走 到达 |
如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
试题篮
()