优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 勾股定理
初中数学

已知菱形 ABCD 的面积为 2 3 ,点 E 是一边 BC 上的中点,点 P 是对角线 BD 上的动点.连接 AE ,若 AE 平分 BAC ,则线段 PE PC 的和的最小值为   ,最大值为   

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 6 AD = 8 ,将此矩形折叠,使点 C 与点 A 重合,点 D 落在点 D ' 处,折痕为 EF ,则 AD ' 的长为    DD ' 的长为   

来源:2021年海南省中考数学试卷
  • 题型:未知
  • 难度:未知

某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积 S 1 S 2 S 3 之间的关系问题”进行了以下探究:

类比探究

(1)如图2,在 Rt Δ ABC 中, BC 为斜边,分别以 AB AC BC 为斜边向外侧作 Rt Δ ABD Rt Δ ACE Rt Δ BCF ,若 1 = 2 = 3 ,则面积 S 1 S 2 S 3 之间的关系式为      

推广验证

(2)如图3,在 Rt Δ ABC 中, BC 为斜边,分别以 AB AC BC 为边向外侧作任意 ΔABD ΔACE ΔBCF ,满足 1 = 2 = 3 D = E = F ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;

拓展应用

(3)如图4,在五边形 ABCDE 中, A = E = C = 105 ° ABC = 90 ° AB = 2 3 DE = 2 ,点 P AE 上, ABP = 30 ° PE = 2 ,求五边形 ABCDE 的面积.

来源:2020年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中,对角线 AC BD 交于点 O ,已知 OA = OC OB = OD ,过点 O EF BD ,分别交 AB DC 于点 E F ,连接 DE BF

(1)求证:四边形 DEBF 是菱形:

(2)设 AD / / EF AD + AB = 12 BD = 4 3 ,求 AF 的长.

来源:2021年广西玉林市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 5 BC = 4 ,点 E AB 边上一点, AE = 3 ,连接 DE ,点 F BC 延长线上一点,连接 AF ,且 F = 1 2 EDC ,则 CF =   

来源:2021年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ABC = 90 ° AB = 8 BC = 12 D AC 边上的一个动点,连接 BD E BD 上的一个动点,连接 AE CE ,当 ABD = BCE 时,线段 AE 的最小值是 (    )

A.

3

B.

4

C.

5

D.

6

来源:2021年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,将等腰直角三角形纸片 ABC 对折,折痕为 CD .展平后,再将点 B 折叠在边 AC 上(不与 A C 重合),折痕为 EF ,点 B AC 上的对应点为 M ,设 CD EM 交于点 P ,连接 PF .已知 BC = 4

(1)若 M AC 的中点,求 CF 的长;

(2)随着点 M 在边 AC 上取不同的位置,

ΔPFM 的形状是否发生变化?请说明理由;

②求 ΔPFM 的周长的取值范围.

来源:2018年江苏省徐州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, E F 为边 AB 上的两个三等分点,点 A 关于 DE 的对称点为 A ' AA ' 的延长线交 BC 于点 G

(1)求证: DE / / A ' F

(2)求 GA ' B 的大小;

(3)求证: A ' C = 2 A ' B

来源:2021年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线轴交于点(点在点的左边),与轴交于点,点是该抛物线的顶点.

(1)如图1,连接,求线段的长;

(2)如图2,点是直线上方抛物线上一点,轴于点与线段交于点;将线段沿轴左右平移,线段的对应线段是,当的值最大时,求四边形周长的最小值,并求出对应的点的坐标;

(3)如图3,点是线段的中点,连接,将沿直线翻折至△的位置,再将△绕点旋转一周,在旋转过程中,点的对应点分别是点,直线分别与直线轴交于点.那么,在△的整个旋转过程中,是否存在恰当的位置,使是以为腰的等腰三角形?若存在,请直接写出所有符合条件的线段的长;若不存在,请说明理由.

来源:2018年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

(回顾)

如图1, ΔABC 中, B = 30 ° AB = 3 BC = 4 ,则 ΔABC 的面积等于      

(探究)

图2是同学们熟悉的一副三角尺,一个含有 30 ° 的角,较短的直角边长为 a ;另一个含有 45 ° 的角,直角边长为 b ,小明用两副这样的三角尺拼成一个平行四边形 ABCD (如图 3 ) ,用了两种不同的方法计算它的面积,从而推出 sin 75 ° = 6 + 2 4 ,小丽用两副这样的三角尺拼成了一个矩形 EFGH (如图 4 ) ,也推出 sin 75 ° = 6 + 2 4 ,请你写出小明或小丽推出 sin 75 ° = 6 + 2 4 的具体说理过程.

(应用)

在四边形 ABCD 中, AD / / BC D = 75 ° BC = 6 CD = 5 AD = 10 (如图5)

(1)点 E AD 上,设 t = BE + CE ,求 t 2 的最小值;

(2)点 F AB 上,将 ΔBCF 沿 CF 翻折,点 B 落在 AD 上的点 G 处,点 G AD 的中点吗?说明理由.

来源:2017年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知线段 AB = 2 MN AB 于点 M ,且 AM = BM P 是射线 MN 上一动点, E D 分别是 PA PB 的中点,过点 A M D 的圆与 BP 的另一交点 C (点 C 在线段 BD 上),连接 AC DE

(1)当 APB = 28 ° 时,求 B CM ̂ 的度数;

(2)求证: AC = AB

(3)在点 P 的运动过程中

①当 MP = 4 时,取四边形 ACDE 一边的两端点和线段 MP 上一点 Q ,若以这三点为顶点的三角形是直角三角形,且 Q 为锐角顶点,求所有满足条件的 MQ 的值;

②记 AP 与圆的另一个交点为 F ,将点 F 绕点 D 旋转 90 ° 得到点 G ,当点 G 恰好落在 MN 上时,连接 AG CG DG EG ,直接写出 ΔACG ΔDEG 的面积之比.

来源:2017年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

在一次数学探究活动中,李老师设计了一份活动单:

已知线段 BC = 2 ,使用作图工具作 BAC = 30 ° ,尝试操作后思考:

(1)这样的点 A 唯一吗?

(2)点 A 的位置有什么特征?你有什么感悟?

“追梦”学习小组通过操作、观察、讨论后汇报:点 A 的位置不唯一,它在以 BC 为弦的圆弧上(点 B C 除外), .小华同学画出了符合要求的一条圆弧(如图 1 )

(1)小华同学提出了下列问题,请你帮助解决.

①该弧所在圆的半径长为   

ΔABC 面积的最大值为   

(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为 A ' ,请你根据图1证明 BA ' C > 30 °

(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形 ABCD 的边长 AB = 2 BC = 3 ,点 P 在直线 CD 的左侧,且 tan DPC = 4 3

①线段 PB 长的最小值为   

②若 S ΔPCD = 2 3 S ΔPAD ,则线段 PD 长为   

来源:2021年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

问题提出

(1)如图①,在中,,则的外接圆半径的值为  

问题探究

(2)如图②,的半径为13,弦的中点,上一动点,求的最大值.

问题解决

(3)如图③所示,是某新区的三条规划路,其中所对的圆心角为,新区管委会想在路边建物资总站点,在路边分别建物资分站点,也就是,分别在、线段上选取点.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路.为了快捷、环保和节约成本.要使得线段之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)

来源:2018年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中, ACB = 90 ° AC = BC ,点 D AB 边上一点(含端点 A B ) ,过点 B BE 垂直于射线 CD ,垂足为 E ,点 F 在射线 CD 上,且 EF = BE ,连接 AF BF

(1)求证: ΔABF ΔCBE

(2)如图2,连接 AE ,点 P M N 分别为线段 AC AE EF 的中点,连接 PM MN PN .求 PMN 的度数及 MN PM 的值;

(3)在(2)的条件下,若 BC = 2 ,直接写出 ΔPMN 面积的最大值.

来源:2021年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知 ABCD AB / / x 轴, AB = 6 ,点 A 的坐标为 ( 1 , 4 ) ,点 D 的坐标为 ( 3 , 4 ) ,点 B 在第四象限,点 P ABCD 边上的一个动点.

(1)若点 P 在边 BC 上, PD = CD ,求点 P 的坐标.

(2)若点 P 在边 AB AD 上,点 P 关于坐标轴对称的点 Q 落在直线 y = x 1 上,求点 P 的坐标.

(3)若点 P 在边 AB AD CD 上,点 G AD y 轴的交点,如图2,过点 P y 轴的平行线 PM ,过点 G x 轴的平行线 GM ,它们相交于点 M ,将 ΔPGM 沿直线 PG 翻折,当点 M 的对应点落在坐标轴上时,求点 P 的坐标.(直接写出答案)

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学勾股定理试题