优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 勾股定理
初中数学

已知 D Rt Δ ABC 斜边 AB 的中点, ACB = 90 ° ABC = 30 ° ,过点 D Rt Δ DEF 使 DEF = 90 ° DFE = 30 ° ,连接 CE 并延长 CE P ,使 EP = CE ,连接 BE FP BP ,设 BC DE 交于 M PB EF 交于 N

(1)如图1,当 D B F 共线时,求证:

EB = EP

EFP = 30 °

(2)如图2,当 D B F 不共线时,连接 BF ,求证: BFD + EFP = 30 °

来源:2020年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的边长是的根,连接,并过点,垂足为,动点点以每秒2个单位长度的速度沿方向匀速运动到点为止;点沿线段以每秒个单位长度的速度由点向点匀速运动,到点为止,点与点同时出发,设运动时间为

(1)线段  

(2)连接,求的面积与运动时间的函数关系式;

(3)在整个运动过程中,当是以为腰的等腰三角形时,直接写出点的坐标.

来源:2020年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 题型:未知
  • 难度:未知

如图1,的三个顶点分别落在抛物线的图象上,点的横坐标为,点的纵坐标为.(点在点的左侧)

(1)求点的坐标;

(2)将绕点逆时针旋转得到△,抛物线经过两点,已知点为抛物线的对称轴上一定点,且点恰好在以为直径的圆上,连接,求△的面积;

(3)如图2,延长交抛物线于点,连接,在坐标轴上是否存在点,使得以为顶点的三角形与△相似.若存在,请求出点的坐标;若不存在,请说明理由.

来源:2019年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线轴交于点(点在点的左边),与轴交于点,点是该抛物线的顶点.

(1)如图1,连接,求线段的长;

(2)如图2,点是直线上方抛物线上一点,轴于点与线段交于点;将线段沿轴左右平移,线段的对应线段是,当的值最大时,求四边形周长的最小值,并求出对应的点的坐标;

(3)如图3,点是线段的中点,连接,将沿直线翻折至△的位置,再将△绕点旋转一周,在旋转过程中,点的对应点分别是点,直线分别与直线轴交于点.那么,在△的整个旋转过程中,是否存在恰当的位置,使是以为腰的等腰三角形?若存在,请直接写出所有符合条件的线段的长;若不存在,请说明理由.

来源:2018年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

问题提出

(1)如图①,在中,,则的外接圆半径的值为  

问题探究

(2)如图②,的半径为13,弦的中点,上一动点,求的最大值.

问题解决

(3)如图③所示,是某新区的三条规划路,其中所对的圆心角为,新区管委会想在路边建物资总站点,在路边分别建物资分站点,也就是,分别在、线段上选取点.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路.为了快捷、环保和节约成本.要使得线段之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)

来源:2018年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

课本再现

(1)在证明"三角形内角和定理"时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与 A 相等的角是   

类比迁移

(2)如图2,在四边形 ABCD 中, ABC ADC 互余,小明发现四边形 ABCD 中这对互余的角可类比(1)中思路进行拼合:先作 CDF = ABC ,再过点 C CE DF 于点 E ,连接 AE ,发现 AD DE AE 之间的数量关系是   

方法运用

(3)如图3,在四边形 ABCD 中,连接 AC BAC = 90 ° ,点 O ΔACD 两边垂直平分线的交点,连接 OA OAC = ABC

①求证: ABC + ADC = 90 °

②连接 BD ,如图4,已知 AD = m DC = n AB AC = 2 ,求 BD 的长(用含 m n 的式子表示).

来源:2021年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

在几何体表面上,蚂蚁怎样爬行路径最短?

(1)如图①,圆锥的母线长为 12 cm B 为母线 OC 的中点,点 A 在底面圆周上, AC ̂ 的长为 4 πcm .在图②所示的圆锥的侧面展开图中画出蚂蚁从点 A 爬行到点 B 的最短路径,并标出它的长(结果保留根号).

(2)图③中的几何体由底面半径相同的圆锥和圆柱组成. O 是圆锥的顶点,点 A 在圆柱的底面圆周上,设圆锥的母线长为 l ,圆柱的高为 h

①蚂蚁从点 A 爬行到点 O 的最短路径的长为   l + h  (用含 l h 的代数式表示).

②设 AD ̂ 的长为 a ,点 B 在母线 OC 上, OB = b .圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点 A 爬行到点 B 的最短路径的示意图,并写出求最短路径的长的思路.

来源:2021年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学勾股定理试题