如图1,在四边形 中,如果对角线 和 相交并且相等,那么我们把这样的四边形称为等角线四边形.
(1)①在“平行四边形、矩形、菱形”中, 一定是等角线四边形(填写图形名称);
②若 、 、 、 分别是等角线四边形 四边 、 、 、 的中点,当对角线 、 还要满足 时,四边形 是正方形.
(2)如图2,已知 中, , , , 为平面内一点.
①若四边形 是等角线四边形,且 ,则四边形 的面积是 ;
②设点 是以 为圆心,1为半径的圆上的动点,若四边形 是等角线四边形,写出四边形 面积的最大值,并说明理由.
在平面直角坐标系中,直线 交 轴于点 ,交 轴于点 .
(1) 的值是 ;
(2)点 是直线 上的一个动点,点 和点 分别在 轴和 轴上.
①如图,点 为线段 的中点,且四边形 是平行四边形时,求 的周长;
②当 平行于 轴, 平行于 轴时,连接 ,若 的面积为 ,请直接写出点 的坐标.
如图,正方形 的对角线 , 相交于点 ,点 在 上由点 向点 运动(点 不与点 重合),连接 ,将线段 绕点 逆时针旋转 得到线段 ,连接 交 于点 .设 的长为 , 的长为 ,下列图象中大致反映 与 之间的函数关系的是
A.B.
C.D.
如图,在 中, ,点 , 分别为 , 的中点,连接 ,作 与 相切于点 ,在 边上取一点 ,使 ,连接 .
(1)判断直线 与 的位置关系,并说明理由;
(2)当 , 时,求 的半径.
如图,在 中, , , , 分别为 、 、 的中点,则下列结论:① ,②四边形 为菱形,③ .其中正确的结论是 .(填写所有正确结论的序号)
试题篮
()