如图, 中,点 为边 的中点,连接 ,将 沿直线 翻折至 所在平面内,得 ,连接 ,分别与边 交于点 ,与 交于点 .若 , ,则 的长为 .
如图, 为圆 的直径, 为圆 上一点, 为 延长线一点,且 , 于点 .
(1)求证:直线 为圆 的切线;
(2)设 与圆 交于点 , 的延长线与 交于点 ,已知 , , ,求 的值.
如图,要测定被池塘隔开的 , 两点的距离.可以在 外选一点 ,连接 , ,并分别找出它们的中点 , ,连接 .现测得 , , ,则
A. B. C. D.
(1)操作发现:如图①,小明画了一个等腰三角形 ,其中 ,在 的外侧分别以 , 为腰作了两个等腰直角三角形 , ,分别取 , , 的中点 , , ,连接 , .小明发现了:线段 与 的数量关系是 ;位置关系是 .
(2)类比思考:
如图②,小明在此基础上进行了深入思考.把等腰三角形 换为一般的锐角三角形,其中 ,其它条件不变,小明发现的上述结论还成立吗?请说明理由.
(3)深入研究:
如图③,小明在(2)的基础上,又作了进一步的探究.向 的内侧分别作等腰直角三角形 , ,其它条件不变,试判断 的形状,并给与证明.
如图,正方形 中, , 分别在边 , 上, , 相交于点 ,若 , ,则 的值是
A. B. C. D.
试题篮
()