如图,直线 与 轴交于点 ,与 轴交于点 .将线段 先向右平移1个单位长度、再向上平移 个单位长度,得到对应线段 ,反比例函数 的图象恰好经过 、 两点,连接 、 .
(1)求 和 的值;
(2)求反比例函数的表达式及四边形 的面积;
(3)点 在 轴正半轴上,点 是反比例函数 的图象上的一个点,若 是以 为直角边的等腰直角三角形时,求所有满足条件的点 的坐标.
如图,菱形 中,对角线 , 相交于点 , , ,动点 从点 出发,沿线段 以 的速度向点 运动,同时动点 从点 出发,沿线段 以 的速度向点 运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为 ,以点 为圆心, 长为半径的 与射线 ,线段 分别交于点 , ,连接 .
(1)求 的长(用含有 的代数式表示),并求出 的取值范围;
(2)当 为何值时,线段 与 相切?
(3)若 与线段 只有一个公共点,求 的取值范围.
边长为6的等边 中,点 、 分别在 、 边上, , .
(1)如图1,将 沿射线 方向平移,得到△ ,边 与 的交点为 ,边 与 的角平分线交于点 ,当 多大时,四边形 为菱形?并说明理由.
(2)如图2,将 绕点 旋转 ,得到△ ,连接 、 .边 的中点为 .
①在旋转过程中, 和 有怎样的数量关系?并说明理由;
②连接 ,当 最大时,求 的值.(结果保留根号)
已知:如图,在菱形 中,点 , , 分别为 , , 的中点,连接 , , , .
(1)求证: ;
(2)当 与 满足什么关系时,四边形 是正方形?请说明理由.
已知:如图①,将 的菱形 沿对角线 剪开,将 沿射线 方向平移,得到 ,点 为边 上一点(点 不与点 、点 重合),将射线 绕点 逆时针旋转 ,与 的延长线交于点 ,连接 .
(1)①求证: ;
②探究 的形状;
(2)如图②,若菱形 变为正方形 ,将射线 绕点 逆时针旋转 ,原题其他条件不变,(1)中的①、②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.
已知在菱形 中, ,对角线 、 相交于点 ,点 是线段 上一动点(不与点 , 重合),连接 ,以 为边在 的右侧作菱形 ,且 .
(1)如图1,若点 落在线段 上,请判断:线段 与线段 的数量关系是
(2)如图2,若点 不在线段 上,其它条件不变,(1)中的结论是否仍然成立?请给出判断并予以证明;
(3)若点 , , 三点在同一直线上,其它条件不变,请直接写出线段 与线段 的数量关系.
已知:四边形 是菱形,以 为圆心作 ,与 相切于点 ,交 于 ,交 于 ,连接 , .
(1)求证: 是 的切线;
(2)连接 交 于点 ,若 ,求证: .
在菱形 中,点 为对角线 上一点,点 , 在直线 上,且 , .
(1)如图1,求证: ;
(2)如图2,当 时,求证: ;
(3)如图3,当 ,点 在线段 上时,线段 , , 的数量关系如何?(请直接写出你猜想的结论)
如图1,在菱形 中, , ,点 从点 出发,以每秒1个单位长度的速度沿着射线 的方向匀速运动,设运动时间为 (秒 ,将线段 绕点 顺时针旋转一个角 ,得到对应线段 .
(1)求证: ;
(2)当 秒时, 的长度有最小值,最小值等于 ;
(3)如图2,连接 、 、 交 、 于点 、 ,当 为何值时, 是直角三角形?
(4)如图3,将线段 绕点 顺时针旋转一个角 ,得到对应线段 .在点 的运动过程中,当它的对应点 位于直线 上方时,直接写出点 到直线 的距离 关于时间 的函数表达式.
如图,四边形 是菱形, ,点 在射线 上(不包括点 和点 ,过点 的直线 交直线 于点 ,交直线 于点 ,且 ,点 在 的延长线上, ,连接 , , .
(1)如图1,当点 在线段 上时,
①判断 的形状,并说明理由.
②求证: 是等边三角形.
(2)如图2,当点 在 的延长线上时, 是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.
如图,四边形 为菱形,以 为直径作 交 于点 ,连接 交 于点 , 是 上的一点,且 ,连接 .
(1)求证: 是 的切线.
(2)若 , ,求 的半径.
如图,在菱形 中,对角线 与 交于点 .过点 作 的平行线,过点 作 的平行线,两直线相交于点 .
(1)求证:四边形 是矩形;
(2)若 , ,则菱形 的面积是 .
如图,菱形 的顶点 在 轴正半轴上,边 在 轴上,且 , ,反比例函数 的图象分别与 , 交于点 、点 ,点 的坐标是 ,连接 , .
(1)求反比例函数的解析式;
(2)求证: 是等腰三角形.
试题篮
()