优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 正方形的判定与性质
初中数学

如图,点 E 为正方形 ABCD 外一点, AEB = 90 ° ,将 Rt Δ ABE A 点逆时针方向旋转 90 ° 得到 ΔADF DF 的延长线交 BE H 点.

(1)试判定四边形 AFHE 的形状,并说明理由;

(2)已知 BH = 7 BC = 13 ,求 DH 的长.

来源:2021年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是 (    )

A.由②推出③,由③推出①B.由①推出②,由②推出③

C.由③推出①,由①推出②D.由①推出③,由③推出②

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

综合与实践

问题情境:

如图①,点 E 为正方形 ABCD 内一点, AEB = 90 ° ,将 Rt Δ ABE 绕点 B 按顺时针方向旋转 90 ° ,得到 ΔCBE ' (点 A 的对应点为点 C ) .延长 AE CE ' 于点 F ,连接 DE

猜想证明:

(1)试判断四边形 B E ' FE 的形状,并说明理由;

(2)如图②,若 DA = DE ,请猜想线段 CF F E ' 的数量关系并加以证明;

解决问题:

(3)如图①,若 AB = 15 CF = 3 ,请直接写出 DE 的长.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形, BAC = 75 ° ABC = 45 ° .连接 AO 并延长,交 O 于点 D ,连接 BD .过点 C O 的切线,与 BA 的延长线相交于点 E

(1)求证: AD / / EC

(2)若 AB = 12 ,求线段 EC 的长.

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° CD 平分 ACB AB 于点 D ,按下列步骤作图:

步骤1:分别以点 C 和点 D 为圆心,大于 1 2 CD 的长为半径作弧,两弧相交于 M N 两点;

步骤2:作直线 MN ,分别交 AC BC 于点 E F

步骤3:连接 DE DF

AC = 4 BC = 2 ,则线段 DE 的长为 (    )

A. 5 3 B. 3 2 C. 2 D. 4 3

来源:2018年江苏省南通市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.

(1)如图1,等腰直角四边形 ABCD AB = BC ABC = 90 °

①若 AB = CD = 1 AB / / CD ,求对角线 BD 的长.

②若 AC BD ,求证: AD = CD

(2)如图2,在矩形 ABCD 中, AB = 5 BC = 9 ,点 P 是对角线 BD 上一点,且 BP = 2 PD ,过点 P 作直线分别交边 AD BC 于点 E F ,使四边形 ABFE 是等腰直角四边形,求 AE 的长.

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 D O 上(点 D 不与 A B 重合),直线 AD 交过点 B 的切线于点 C ,过点 D O 的切线 DE BC 于点 E

(1)求证: BE = CE

(2)若 DE / / AB ,求 sin ACO 的值.

来源:2018年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图(1),已知点 G 在正方形 ABCD 的对角线 AC 上, GE BC ,垂足为点 E GF CD ,垂足为点 F

(1)证明与推断:

①求证:四边形 CEGF 是正方形;

②推断: AG BE 的值为       

(2)探究与证明:

将正方形 CEGF 绕点 C 顺时针方向旋转 α ( 0 ° < α < 45 ° ) ,如图(2)所示,试探究线段 AG BE 之间的数量关系,并说明理由;

(3)拓展与运用:

正方形 CEGF 在旋转过程中,当 B E F 三点在一条直线上时,如图(3)所示,延长 CG AD 于点 H .若 AG = 6 GH = 2 2 ,则 BC =       

来源:2018年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形纸片 ABCD 中, AB = 6 cm BC = 8 cm .现将其沿 AE 对折,使得点 B 落在边 AD 上的点 B 1 处,折痕与边 BC 交于点 E ,则 CE 的长为 (    )

A. 6 cm B. 4 cm C. 3 cm D. 2 cm

来源:2018年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, BAC = 90 ° AB = AC ,过点 A 作边 BC 的垂线 AF DC 的延长线于点 E ,点 F 是垂足,连接 BE DF DF AC 于点 O .则下列结论:①四边形 ABEC 是正方形;② CO : BE = 1 : 3 ;③ DE = 2 BC ;④ S 四边形OCEF = S ΔAOD ,正确的个数是 (    )

A.1B.2C.3D.4

来源:2019年黑龙江省七台河市中考数学试卷
  • 题型:未知
  • 难度:未知

问题情境:

在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片 ABCD 沿对角线 AC 剪开,得到 ΔABC ΔACD .并且量得 AB = 2 cm AC = 4 cm

操作发现:

(1)将图1中的 ΔACD 以点 A 为旋转中心,按逆时针方向旋转 α ,使 α = BAC ,得到如图2所示的△ AC ' D ,过点 C AC ' 的平行线,与 D C ' 的延长线交于点 E ,则四边形 ACEC ' 的形状是  

(2)创新小组将图1中的 ΔACD 以点 A 为旋转中心,按逆时针方向旋转,使 B A D 三点在同一条直线上,得到如图3所示的△ AC ' D ,连接 C C ' ,取 CC ' 的中点 F ,连接 AF 并延长至点 G ,使 FG = AF ,连接 CG C ' G ,得到四边形 ACGC ' ,发现它是正方形,请你证明这个结论.

实践探究:

(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将 ΔABC 沿着 BD 方向平移,使点 B 与点 A 重合,此时 A 点平移至 A ' 点, A ' C BC ' 相交于点 H ,如图4所示,连接 CC ' ,试求 tan C ' CH 的值.

来源:2018年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° AB = 6 BC = 8 BAC ACB 的平分线相交于点 E ,过点 E EF / / BC AC 于点 F ,则 EF 的长为 (    )

A. 5 2 B. 8 3 C. 10 3 D. 15 4

来源:2017年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是矩形 ( AB < BC ) ,要在矩形 ABCD 内作一个以 AB 为边的正方形 ABEF ,某位同学的作法如下:

①作 ABC 的平分线 BM BM AD 于点 F

②以点 B 为圆心, BA 长为半径画弧,交 BC 于点 E ,连接 EF

(1)求证:四边形 ABEF 是正方形;

(2)若 AB = 5 ,求图中阴影部分的面积.

来源:2016年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

在矩形纸片 ABCD 中, AD = 8 AB = 6 E 是边 BC 上的点,将纸片沿 AE 折叠,使点 B 落在点 F 处,连接 FC ,当 ΔEFC 为直角三角形时, BE 的长为  

来源:2017年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1)如图1,四边形 ABCD 中,点 E F G H 分别为边 AB BC CD DA 的中点.求证:中点四边形 EFGH 是平行四边形;

(2)如图2,点 P 是四边形 ABCD 内一点,且满足 PA = PB PC = PD APB = CPD ,点 E F G H 分别为边 AB BC CD DA 的中点,猜想中点四边形 EFGH 的形状,并证明你的猜想;

(3)若改变(2)中的条件,使 APB = CPD = 90 ° ,其他条件不变,直接写出中点四边形 EFGH 的形状.(不必证明)

来源:2016年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学正方形的判定与性质试题