优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 四边形综合题 / 解答题
初中数学

综合与实践

问题情境:数学活动课上,老师出示了一个问题:如图①,在 ABCD 中, BE AD ,垂足为 E F CD 的中点,连接 EF BF ,试猜想 EF BF 的数量关系,并加以证明.

独立思考:(1)请解答老师提出的问题;

实践探究:(2)希望小组受此问题的启发,将 ABCD 沿着 BF ( F CD 的中点)所在直线折叠,如图②,点 C 的对应点为 C ' ,连接 DC ' 并延长交 AB 于点 G ,请判断 AG BG 的数量关系,并加以证明.

问题解决:(3)智慧小组突发奇想,将 ABCD 沿过点 B 的直线折叠,如图③,点 A 的对应点为 A ' ,使 A ' B CD 于点 H ,折痕交 AD 于点 M ,连接 A ' M ,交 CD 于点 N .该小组提出一个问题:若此 ABCD 的面积为20,边长 AB = 5 BC = 2 5 ,求图中阴影部分(四边形 BHNM ) 的面积.请你思考此问题,直接写出结果.

来源:2021年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AB / / CD AB CD ABC = 90 ° ,点 E F 分别在线段 BC AD 上,且 EF / / CD AB = AF CD = DF

(1)求证: CF FB

(2)求证:以 AD 为直径的圆与 BC 相切;

(3)若 EF = 2 DFE = 120 ° ,求 ΔADE 的面积.

来源:2021年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, AB = AC ,点 E F G 分别在边 BC CD 上, BE = CG AF 平分 EAG ,点 H 是线段 AF 上一动点(与点 A 不重合).

(1)求证: ΔAEH ΔAGH

(2)当 AB = 12 BE = 4 时.

ΔDGH 周长的最小值;

②若点 O AC 的中点,是否存在直线 OH ΔACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为 1 : 3 .若存在,请求出 AH AF 的值;若不存在,请说明理由.

来源:2020年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, A = C = 90 ° DE BF 分别平分 ADC ABC ,并交线段 AB CD 于点 E F (点 E B 不重合).在线段 BF 上取点 M N (点 M BN 之间),使 BM = 2 FN .当点 P 从点 D 匀速运动到点 E 时,点 Q 恰好从点 M 匀速运动到点 N .记 QN = x PD = y ,已知 y = - 6 5 x + 12 ,当 Q BF 中点时, y = 24 5

(1)判断 DE BF 的位置关系,并说明理由.

(2)求 DE BF 的长.

(3)若 AD = 6

①当 DP = DF 时,通过计算比较 BE BQ 的大小关系.

②连结 PQ ,当 PQ 所在直线经过四边形 ABCD 的一个顶点时,求所有满足条件的 x 的值.

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在边长为1的正方形 ABCD 中,动点 E F 分别在边 AB CD 上,将正方形 ABCD 沿直线 EF 折叠,使点 B 的对应点 M 始终落在边 AD 上(点 M 不与点 A D 重合),点 C 落在点 N 处, MN CD 交于点 P ,设 BE = x

(1)当 AM = 1 3 时,求 x 的值;

(2)随着点 M 在边 AD 上位置的变化, ΔPDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;

(3)设四边形 BEFC 的面积为 S ,求 S x 之间的函数表达式,并求出 S 的最小值.

来源:2018年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在射线 BA BC AD CD 围成的菱形 ABCD 中, ABC = 60 ° AB = 6 3 O 是射线 BD 上一点, O BA BC 都相切,与 BO 的延长线交于点 M .过 M EF BD 交线段 BA (或射线 AD ) 于点 E ,交线段 BC (或射线 CD ) 于点 F .以 EF 为边作矩形 EFGH ,点 G H 分别在围成菱形的另外两条射线上.

(1)求证: BO = 2 OM

(2)设 EF > HE ,当矩形 EFGH 的面积为 24 3 时,求 O 的半径.

(3)当 HE HG O 相切时,求出所有满足条件的 BO 的长.

来源:2016年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 O 为坐标原点,点 B 的坐标为 ( 4 , 3 ) ,点 A C 在坐标轴上,点 P BC 边上,直线 l 1 : y = 2 x + 3 ,直线 l 2 : y = 2 x 3

(1)分别求直线 l 1 x 轴,直线 l 2 AB 的交点坐标;

(2)已知点 M 在第一象限,且是直线 l 2 上的点,若 ΔAPM 是等腰直角三角形,求点 M 的坐标;

(3)我们把直线 l 1 和直线 l 2 上的点所组成的图形为图形 F .已知矩形 ANPQ 的顶点 N 在图形 F 上, Q 是坐标平面内的点,且 N 点的横坐标为 x ,请直接写出 x 的取值范围(不用说明理由).

来源:2016年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的边 AB x 轴上, AB BC 的长分别是一元二次方程 x 2 7 x + 12 = 0 的两个根 ( BC > AB ) OA = 2 OB ,边 CD y 轴于点 E ,动点 P 以每秒1个单位长度的速度,从点 A 出发沿折线段 AD DE 向点 E 运动,运动的时间为 t ( 0 t 6 ) 秒,设 ΔBPE 的面积为 S

(1)求点 D 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量的取值范围;

(3)在点 P 运动的过程中,是否存在点 P ,使 ΔBEP 是以 BE 为腰的等腰三角形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 题型:未知
  • 难度:未知

菱形 ABCD 在平面直角坐标系中的位置如图所示,对角线 AC BD 的交点 E 恰好在 y 轴上,过点 D BC 的中点 H 的直线交 AC 于点 F ,线段 DE CD 的长是方程 x 2 9 x + 18 = 0 的两根,请解答下列问题:

(1)求点 D 的坐标;

(2)若反比例函数 y = k x ( k 0 ) 的图象经过点 H ,则 k =   

(3)点 Q 在直线 BD 上,在直线 DH 上是否存在点 P ,使以点 F C P Q 为顶点的四边形是平行四边形?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)数学理解:如图①, ΔABC 是等腰直角三角形,过斜边 AB 的中点 D 作正方形 DECF ,分别交 BC AC 于点 E F ,求 AB BE AF 之间的数量关系;

(2)问题解决:如图②,在任意直角 ΔABC 内,找一点 D ,过点 D 作正方形 DECF ,分别交 BC AC 于点 E F ,若 AB = BE + AF ,求 ADB 的度数;

(3)联系拓广:如图③,在(2)的条件下,分别延长 ED FD ,交 AB 于点 M N ,求 MN AM BN 的数量关系.

来源:2019年贵州省贵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知: Rt Δ EFP 和矩形 ABCD 如图①摆放(点 P 与点 B 重合),点 F B ( P ) C 在同一直线上, AB = EF = 6 cm BC = FP = 8 cm EFP = 90 ° .如图②, ΔEFP 从图①的位置出发,沿 BC 方向匀速运动,速度为 1 cm / s EP AB 交于点 G ;同时,点 Q 从点 C 出发,沿 CD 方向匀速运动,速度为 1 cm / s .过点 Q QM BD ,垂足为 H ,交 AD 于点 M ,连接 AF PQ ,当点 Q 停止运动时, ΔEFP 也停止运动.设运动时间为 t ( s ) ( 0 < t < 6 ) ,解答下列问题:

(1)当 t 为何值时, PQ / / BD

(2)设五边形 AFPQM 的面积为 y ( c m 2 ) ,求 y t 之间的函数关系式;

(3)在运动过程中,是否存在某一时刻 t ,使 S 五边形AFPQM : S 矩形ABCD = 9 : 8 ?若存在,求出 t 的值;若不存在,请说明理由.

(4)在运动过程中,是否存在某一时刻 t ,使点 M 在线段 PG 的垂直平分线上?若存在,求出 t 的值;若不存在,请说明理由.

来源:2017年山东省青岛市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中,矩形 EFGH 的一边 EF AB 上,顶点 G H 分别在 BC AC 上, CD 是边 AB 上的高, CD GH 于点 I .若 CI = 4 HI = 3 AD = 9 2 .矩形 DFGI 恰好为正方形.

(1)求正方形 DFGI 的边长;

(2)如图2,延长 AB P .使得 AC = CP ,将矩形 EFGH 沿 BP 的方向向右平移,当点 G 刚好落在 CP 上时,试判断移动后的矩形与 ΔCBP 重叠部分的形状是三角形还是四边形,为什么?

(3)如图3,连接 DG ,将正方形 DFGI 绕点 D 顺时针旋转一定的角度得到正方形 DF ' G ' I ' ,正方形 DF ' G ' I ' 分别与线段 DG DB 相交于点 M N ,求 ΔMNG ' 的周长.

来源:2018年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AC = BC = 4 cm ,动点 P 从点 C 出发以 1 cm / s 的速度沿 CA 匀速运动,同时动点 Q 从点 A 出发以 2 cm / s 的速度沿 AB 匀速运动,当点 P 到达点 A 时,点 P Q 同时停止运动,设运动时间为 t ( s )

(1)当 t 为何值时,点 B 在线段 PQ 的垂直平分线上?

(2)是否存在某一时刻 t ,使 ΔAPQ 是以 PQ 为腰的等腰三角形?若存在,求出 t 的值;若不存在,请说明理由;

(3)以 PC 为边,往 CB 方向作正方形 CPMN ,设四边形 QNCP 的面积为 S ,求 S 关于 t 的函数关系式.

来源:2018年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知正方形 ABCD AC BD 交于 O 点,点 M 在线段 BD 上,作直线 AM 交直线 DC E ,过 D DH AE H ,设直线 DH AC N

(1)如图1,当 M 在线段 BO 上时,求证: MO = NO

(2)如图2,当 M 在线段 OD 上,连接 NE ,当 EN / / BD 时,求证: BM = AB

(3)在图3,当 M 在线段 OD 上,连接 NE ,当 NE EC 时,求证: A N 2 = NC AC

来源:2018年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

已知点 O 是正方形 ABCD 对角线 BD 的中点.

(1)如图1,若点 E OD 的中点,点 F AB 上一点,且使得 CEF = 90 ° ,过点 E ME / / AD ,交 AB 于点 M ,交 CD 于点 N .求证:

AEM = FEM ②点 F AB 的中点;

(2)如图2,若点 E OD 上一点,点 F AB 上一点,且使 DE DO = AF AB = 1 3 ,请判断 ΔEFC 的形状,并说明理由;

(3)如图3,若 E OD 上的动点(不与 O D 重合),连接 CE ,过 E 点作 EF CE ,交 AB 于点 F ,当 DE DB = m n 时,请猜想 AF AB 的值(请直接写出结论).

来源:2017年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学四边形综合题解答题