如图,矩形 中,点 为对角线 所在直线上的一个动点,连接 ,过点 作 ,交直线 于点 ,过点 作 ,交直线 于点 ,交直线 于点 . , .
(1)如图1,①当点 在线段 上时, 和 的数量关系为: ;
② 的值是 ;
(2)如图2,当点 在 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;
(3)如图3,以线段 , 为邻边作矩形 .设 的长为 ,矩形 的面积为 .请直接写出 与 之间的函数关系式及 的最小值.

【了解概念】
有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.

【理解运用】
(1)如图①,对余四边形 中, , , ,连接 .若 ,求 的值;
(2)如图②,凸四边形 中, , ,当 时,判断四边形 是否为对余四边形.证明你的结论;
【拓展提升】
(3)在平面直角坐标系中,点 , , ,四边形 是对余四边形,点 在对余线 上,且位于 内部, .设 ,点 的纵坐标为 ,请直接写出 关于 的函数解析式.
(1)如图1,点 为矩形 对角线 上一点,过点 作 ,分别交 、 于点 、 .若 , , 的面积为 , 的面积为 ,则 ;
(2)如图2,点 为 内一点(点 不在 上),点 、 、 、 分别为各边的中点.设四边形 的面积为 ,四边形 的面积为 (其中 ,求 的面积(用含 、 的代数式表示);
(3)如图3,点 为 内一点(点 不在 上),过点 作 , ,与各边分别相交于点 、 、 、 .设四边形 的面积为 ,四边形 的面积为 (其中 ,求 的面积(用含 、 的代数式表示);
(4)如图4,点 、 、 、 把 四等分.请你在圆内选一点 (点 不在 、 上),设 、 、 围成的封闭图形的面积为 , 、 、 围成的封闭图形的面积为 , 的面积为 , 的面积为 ,根据你选的点 的位置,直接写出一个含有 、 、 、 的等式(写出一种情况即可).

定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为"直角等邻对补"四边形,简称"直等补"四边形.
根据以上定义,解决下列问题:
(1)如图1,正方形 中, 是 上的点,将 绕 点旋转,使 与 重合,此时点 的对应点 在 的延长线上,则四边形 为"直等补"四边形,为什么?
(2)如图2,已知四边形 是"直等补"四边形, , , ,点 到直线 的距离为 .
①求 的长;
②若 、 分别是 、 边上的动点,求 周长的最小值.

如图1,平面直角坐标系 中,等腰 的底边 在 轴上, ,顶点 在 的正半轴上, ,一动点 从 出发,以每秒1个单位的速度沿 向左运动,到达 的中点停止.另一动点 从点 出发,以相同的速度沿 向左运动,到达点 停止.已知点 、 同时出发,以 为边作正方形 ,使正方形 和 在 的同侧,设运动的时间为 秒 .
(1)当点 落在 边上时,求 的值;
(2)设正方形 与 重叠面积为 ,请问是否存在 值,使得 ?若存在,求出 值;若不存在,请说明理由;
(3)如图2,取 的中点 ,连结 ,当点 、 开始运动时,点 从点 出发,以每秒 个单位的速度沿 运动,到达点 停止运动.请问在点 的整个运动过程中,点 可能在正方形 内(含边界)吗?如果可能,求出点 在正方形 内(含边界)的时长;若不可能,请说明理由.

如图,四边形 是正方形,点 为对角线 的中点.
(1)问题解决:如图①,连接 ,分别取 , 的中点 , ,连接 ,则 与 的数量关系是 ,位置关系是 ;
(2)问题探究:如图②,△ 是将图①中的 绕点 按顺时针方向旋转 得到的三角形,连接 ,点 , 分别为 , 的中点,连接 , .判断 的形状,并证明你的结论;
(3)拓展延伸:如图③,△ 是将图①中的 绕点 按逆时针方向旋转 得到的三角形,连接 ,点 , 分别为 , 的中点,连接 , .若正方形 的边长为1,求 的面积.

如图,在平面直角坐标系中,矩形 的边 长是 的根,连接 , ,并过点 作 ,垂足为 ,动点 从 点以每秒2个单位长度的速度沿 方向匀速运动到 点为止;点 沿线段 以每秒 个单位长度的速度由点 向点 匀速运动,到点 为止,点 与点 同时出发,设运动时间为 秒 .
(1)线段 ;
(2)连接 和 ,求 的面积 与运动时间 的函数关系式;
(3)在整个运动过程中,当 是以 为腰的等腰三角形时,直接写出点 的坐标.

如图,在平面直角坐标系中,四边形 的边 在 轴上, 在 轴上. 为坐标原点, ,线段 , 的长分别是方程 的两个根 , .
(1)求点 , 的坐标;
(2) 为 上一点, 为 上一点, ,将 翻折,使点 落在 上的点 处,双曲线 的一个分支过点 .求 的值;
(3)在(2)的条件下, 为坐标轴上一点,在平面内是否存在点 ,使以 , , , 为顶点四边形为矩形?若存在,请直接写出点 的坐标;若不存在,请说明理由.

如图,在平面直角坐标系 中,矩形 的边 , .若不改变矩形 的形状和大小,当矩形顶点 在 轴的正半轴上左右移动时,矩形的另一个顶点 始终在 轴的正半轴上随之上下移动.
(1)当 时,求点 的坐标;
(2)设 的中点为 ,连接 、 ,当四边形 的面积为 时,求 的长;
(3)当点 移动到某一位置时,点 到点 的距离有最大值,请直接写出最大值,并求此时 的值.

如图一,在射线 的一侧以 为一条边作矩形 , , ,点 是线段 上一动点(不与点 重合),连结 ,过点 作 的垂线交射线 于点 ,连接 .

(1)求 的大小;
(2)问题探究:动点 在运动的过程中,
①是否能使 为等腰三角形,如果能,求出线段 的长度;如果不能,请说明理由.
② 的大小是否改变?若不改变,请求出 的大小;若改变,请说明理由.
(3)问题解决:
如图二,当动点 运动到 的中点时, 与 的交点为 , 的中点为 ,求线段 的长度.
如图,在等边 中, ,动点 从点 出发以 的速度沿 匀速运动.动点 同时从点 出发以同样的速度沿 的延长线方向匀速运动,当点 到达点 时,点 、 同时停止运动.设运动时间为 .过点 作 于 ,连接 交 边于 .以 、 为边作平行四边形 .
(1)当 为何值时, 为直角三角形;
(2)是否存在某一时刻 ,使点 在 的平分线上?若存在,求出 的值,若不存在,请说明理由;
(3)求 的长;
(4)取线段 的中点 ,连接 ,将 沿直线 翻折,得△ ,连接 ,当 为何值时, 的值最小?并求出最小值.

已知:如图,在四边形 中, , , , , 垂直平分 .点 从点 出发,沿 方向匀速运动,速度为 ;同时,点 从点 出发,沿 方向匀速运动,速度为 ;当一个点停止运动,另一个点也停止运动.过点 作 ,交 于点 ,过点 作 ,分别交 , 于点 , .连接 , .设运动时间为 ,解答下列问题:
(1)当 为何值时,点 在 的平分线上?
(2)设四边形 的面积为 ,求 与 的函数关系式;
(3)在运动过程中,是否存在某一时刻 ,使四边形 的面积最大?若存在,求出 的值;若不存在,请说明理由;
(4)连接 , ,在运动过程中,是否存在某一时刻 ,使 ?若存在,求出 的值;若不存在,请说明理由.

如图1,在矩形 中, , , 是 边上一点,连接 ,将矩形 沿 折叠,顶点 恰好落在 边上点 处,延长 交 的延长线于点 .
(1)求线段 的长;
(2)如图2, , 分别是线段 , 上的动点(与端点不重合),且 ,设 , .
①写出 关于 的函数解析式,并求出 的最小值;
②是否存在这样的点 ,使 是等腰三角形?若存在,请求出 的值;若不存在,请说明理由.

如图,在以点 为中心的正方形 中, ,连接 ,动点 从点 出发沿 以每秒1个单位长度的速度匀速运动,到达点 停止.在运动过程中, 的外接圆交 于点 ,连接 交 于点 ,连接 ,将 沿 翻折,得到 .
(1)求证: 是等腰直角三角形;
(2)当点 恰好落在线段 上时,求 的长;
(3)设点 运动的时间为 秒, 的面积为 ,求 关于时间 的关系式.

试题篮
()