综合与实践
问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形中,,是延长线上一点,且,连接,交于点,以为一边在的左下方作正方形,连接.试判断线段与的位置关系.
探究展示:勤奋小组发现,垂直平分,并展示了如下的证明方法:
证明:,.
,.
四边形是矩形,.
.(依据
,..
即是的边上的中线,
又,.(依据
垂直平分.
反思交流:
(1)①上述证明过程中的“依据1”“依据2”分别是指什么?
②试判断图1中的点是否在线段的垂直平分线上,请直接回答,不必证明;
(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接,以为一边在的左下方作正方形,发现点在线段的垂直平分线上,请你给出证明;
探索发现:
(3)如图3,连接,以为一边在的右上方作正方形,可以发现点,点都在线段的垂直平分线上,除此之外,请观察矩形和正方形的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.
已知:如图,四边形中,,,是对角线上一点,且.
(1)求证:四边形是菱形;
(2)如果,且,求证:四边形是正方形.
问题发现
(1)如图(1),四边形 中,若 , ,则线段 , 的位置关系为 ;
拓展探究
(2)如图(2),在 中,点 为斜边 的中点,分别以 , 为底边,在 外部作等腰三角形 和等腰三角形 ,连接 , ,分别交 , 于点 , ,试猜想四边形 的形状,并说明理由;
解决问题
(3)如图(3),在正方形 中, ,以点 为旋转中心将正方形 旋转 ,得到正方形 ,请直接写出 的长度.
如图,在矩形中,,,为边上一点,,连接.动点、从点同时出发,点以的速度沿向终点运动;点以的速度沿折线向终点运动.设点运动的时间为,在运动过程中,点,点经过的路线与线段围成的图形面积为.
(1) , ;
(2)求关于的函数解析式,并写出自变量的取值范围;
(3)当时,直接写出的值.
性质探究
如图①,在等腰三角形中,,则底边与腰的长度之比为 .
理解运用
(1)若顶角为的等腰三角形的周长为,则它的面积为 ;
(2)如图②,在四边形中,.
①求证:;
②在边,上分别取中点,,连接.若,,直接写出线段的长.
类比拓展
顶角为的等腰三角形的底边与一腰的长度之比为 (用含的式子表示).
在正方形中,是边上一点(点不与点、重合),连结.
【感知】如图①,过点作交于点.易证.(不需要证明)
【探究】如图②,取的中点,过点作交于点,交于点.
(1)求证:.
(2)连结,若,则的长为 .
【应用】如图③,取的中点,连结.过点作交于点,连结、.若,则四边形的面积为 .
如图①,是矩形的对角线,,.将沿射线方向平移到△的位置,使为中点,连接,,,,如图②.
(1)求证:四边形是菱形;
(2)四边形的周长为 ;
(3)将四边形沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.
【再现】如图①,在中,点,分别是,的中点,可以得到:,且.(不需要证明)
【探究】如图②,在四边形中,点,,,分别是,,,的中点,判断四边形的形状,并加以证明.
【应用】在(1)【探究】的条件下,四边形中,满足什么条件时,四边形是菱形?你添加的条件是: .(只添加一个条件)
(2)如图③,在四边形中,点,,,分别是,,,的中点,对角线,相交于点.若,四边形面积为5,则阴影部分图形的面积和为 .
感知:如图1,平分.,,易知:.
探究:如图2,平分,,,求证:.
应用:如图3,四边形中,,,,则 (用含的代数式表示)
平面内,如图,在中,,,,点为边上任意点,连接,将绕点逆时针旋转得到线段.
(1)当时,求的大小;
(2)当时,求点与点间的距离(结果保留根号);
(3)若点恰好落在的边所在的直线上,直接写出旋转到所扫过的面积.(结果保留
如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q.记△AEF的面积为,四边形EFQP的面积为,四边形PQCB的面积为
(1)求证:EF+PQ=BC
(2)若+=,求的值
(3)若-=,直接写出的值
如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=S△ABF,其中正确的结论有 个.
(年新疆、生产建设兵团)如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连结DE并延长交AB于点F,连结BE.
(1)如图①,求证:∠AFD=∠EBC;
(2)如图②,若DE=EC且BE⊥AF,求∠DAB的度数;
(3)若∠DAB=90°且当△BEF为等腰三角形时,求∠EFB的度数(只写出条件与对应的结果)
试题篮
()