优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 四边形综合题
初中数学

已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CBDC相交于点EF,且∠EAF=60°.

(1)如图1,当点E是线段CB的中点时,直接写出线段AEEFAF之间的数量关系;

(2)如图2,当点E是线段CB上任意一点时(点E不与BC重合),求证:BECF

(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点FBC的距离.

来源:2016年广西南宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 E F 分别在正方形 ABCD 的边 CD BC 上,且 DE = CF ,点 P 在射线 BC 上(点 P 不与点 F 重合).将线段 EP 绕点 E 顺时针旋转 90 ° 得到线段 EG ,过点 E GD 的垂线 QH ,垂足为点 H ,交射线 BC 于点 Q

(1)如图1,若点 E CD 的中点,点 P 在线段 BF 上,线段 BP QC EC 的数量关系为  

(2)如图2,若点 E 不是 CD 的中点,点 P 在线段 BF 上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.

(3)正方形 ABCD 的边长为6, AB = 3 DE QC = 1 ,请直接写出线段 BP 的长.

来源:2019年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,点E(与点BC不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点FBC的垂线交BC的延长线于点G,连接CF

(1)求证:△ABE≌△EGF

(2)若AB=2,SABE=2SECF,求BE

来源:2016年广西来宾市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是正方形,连接 AC ,将 ΔABC 绕点 A 逆时针旋转 α ΔAEF ,连接 CF O CF 的中点,连接 OE OD

(1)如图1,当 α = 45 ° 时,请直接写出 OE OD 的关系(不用证明).

(2)如图2,当 45 ° < α < 90 ° 时,(1)中的结论是否成立?请说明理由.

(3)当 α = 360 ° 时,若 AB = 4 2 ,请直接写出点 O 经过的路径长.

来源:2019年辽宁省朝阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图(1),菱形ABCD对角线ACBD的交点O是四边形EFGH对角线FH的中点,四个顶点ABCD分别在四边形EFGH的边EFFGGHHE上.

(1)求证:四边形EFGH是平行四边形;

(2)如图(2)若四边形EFGH是矩形,当ACFH重合时,已知,且菱形ABCD的面积是20,求矩形EFGH的长与宽.

来源:2016年广西北海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知正方形ABCD边长为1,∠EAF=45°,AEAF,则有下列结论:

①∠1=∠2=22.5°;

②点CEF的距离是 2 - 1

③△ECF的周长为2;

BE+DFEF

其中正确的结论是  .(写出所有正确结论的序号)

来源:2016年广西北海市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.

(1)如图1,等腰直角四边形 ABCD AB = BC ABC = 90 °

①若 AB = CD = 1 AB / / CD ,求对角线 BD 的长.

②若 AC BD ,求证: AD = CD

(2)如图2,在矩形 ABCD 中, AB = 5 BC = 9 ,点 P 是对角线 BD 上一点,且 BP = 2 PD ,过点 P 作直线分别交边 AD BC 于点 E F ,使四边形 ABFE 是等腰直角四边形,求 AE 的长.

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 题型:未知
  • 难度:未知

(1)如图①,在四边形 ABCD 中, AB / / CD ,点 E BC 的中点,若 AE BAD 的平分线,试判断 AB AD DC 之间的等量关系.

解决此问题可以用如下方法:延长 AE DC 的延长线于点 F ,易证 ΔAEB ΔFEC 得到 AB = FC ,从而把 AB AD DC 转化在一个三角形中即可判断.

AB AD DC 之间的等量关系  

(2)问题探究:如图②,在四边形 ABCD 中, AB / / CD AF DC 的延长线交于点 F ,点 E BC 的中点,若 AE BAF 的平分线,试探究 AB AF CF 之间的等量关系,并证明你的结论.

来源:2019年贵州省安顺市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,以 ABCD 的较短边 CD 为一边作菱形 CDEF ,使点 F 落在边 AD 上,连接 BE ,交 AF 于点 G

(1)猜想 BG EG 的数量关系,并说明理由;

(2)延长 DE BA 交于点 H ,其他条件不变:

①如图2,若 ADC = 60 ° ,求 DG BH 的值;

②如图3,若 ADC = α ( 0 ° < α < 90 ° ) ,直接写出 DG BH 的值(用含 α 的三角函数表示)

来源:2018年辽宁省锦州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 的对角线 相交于点 关于 的对称图形为

(1)求证:四边形 是菱形;

(2)连接 ,若

①求 的值;

②若点 为线段 上一动点(不与点 重合),连接 ,一动点 从点 出发,以 的速度沿线段 匀速运动到点 ,再以 的速度沿线段 匀速运动到点 ,到达点 后停止运动,当点 沿上述路线运动到点 所需要的时间最短时,求 的长和点 走完全程所需的时间.

来源:2017年广东省广州市中考数学试卷
  • 题型:未知
  • 难度:未知

菱形 ABCD 中、 BAD = 120 ° ,点 O 为射线 CA 上的动点,作射线 OM 与直线 BC 相交于点 E ,将射线 OM 绕点 O 逆时针旋转 60 ° ,得到射线 ON ,射线 ON 与直线 CD 相交于点 F

(1)如图①,点 O 与点 A 重合时,点 E F 分别在线段 BC CD 上,请直接写出 CE CF CA 三条段段之间的数量关系;

(2)如图②,点 O CA 的延长线上,且 OA = 1 3 AC E F 分别在线段 BC 的延长线和线段 CD 的延长线上,请写出 CE CF CA 三条线段之间的数量关系,并说明理由;

(3)点 O 在线段 AC 上,若 AB = 6 BO = 2 7 ,当 CF = 1 时,请直接写出 BE 的长.

来源:2018年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中 是原点, 的顶点 的坐标分别是 ,点 把线段 三等分,延长 分别交 于点 ,连接 .则下列结论:

的中点;② 相似;③四边形 的面积是 20 3 ;④ OD = 4 5 3

其中正确的结论是   (填写所有正确结论的序号).

来源:2017年广东省广州市中考数学试卷
  • 题型:未知
  • 难度:未知

请完成如下探究系列的有关问题:

探究1:如图1, ΔABC 是等腰直角三角形, BAC = 90 ° ,点 D BC 上一动点,连接 AD ,以 AD 为边在 AD 的右侧作正方形 ADEF ,连接 CF ,则线段 CF BD 之间的位置关系为           ,数量关系为           

探究2:如图2,当点 D 运动到线段 BC 的延长线上,其余条件不变,探究1中的两条结论是否仍然成立?为什么?(请写出证明过程)

探究3:如图3,如果 AB AC BAC 90 ° BCA 仍然保留为 45 ° ,点 D 在线段 BC 上运动,请你判断线段 CF BD 之间的位置关系,并说明理由.

来源:2017年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

如图1, PAQ = 90 ° ,分别在 PAQ 的两边 AP AQ 上取点 B E ,使 AB = AE ,点 D PAQ 的平分线 AM 上, DF AB 于点 F ,点 F 在线段 AB 上(不与点 A 重合),以 AB AD 为邻边作 ABCD ,连接 CF EF

(1)猜想 CF EF 之间的关系,并证明你的猜想;

(2)如图2,连接 CE AM 于点 H

①求证: AD + 2 DH = 2 AB

②若 AB = 9 HD AH = 2 7 ,求线段 BC 的长.

来源:2018年辽宁省鞍山市中考数学试卷
  • 题型:未知
  • 难度:未知

中心为 O 的正六边形 ABCDEF 的半径为 6 cm ,点 P Q 同时分别从 A D 两点出发,以 1 cm / s 的速度沿 AF DC 向终点 F C 运动,连接 PB PE QB QE ,设运动时间为 t ( s )

(1)求证:四边形 PBQE 为平行四边形;

(2)求矩形 PBQE 的面积与正六边形 ABCDEF 的面积之比.

来源:2020年内蒙古通辽市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学四边形综合题试题