优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆的认识 / 解答题
初中数学

已知 AB O 的任意一条直径.

(1)用图1,求证: O 是以直径 AB 所在直线为对称轴的轴对称图形;

(2)已知 O 的面积为 4 π ,直线 CD O 相切于点 C ,过点 B BD CD ,垂足为 D ,如图2.

求证:① 1 2 B C 2 = 2 BD

②改变图2中切点 C 的位置,使得线段 OD BC 时, OD = 2 2

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = a x 2 + bx - 3 过点 A ( - 3 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,顶点为点 D

(1)求抛物线的解析式;

(2)点 P 为直线 CD 上的一个动点,连接 BC

①如图1,是否存在点 P ,使 PBC = BCO ?若存在,求出所有满足条件的点 P 的坐标;若不存在,请说明理由;

②如图2,点 P x 轴上方,连接 PA 交抛物线于点 N PAB = BCO ,点 M 在第三象限抛物线上,连接 MN ,当 ANM = 45 ° 时,请直接写出点 M 的坐标.

来源:2020年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - 1 2 x 2 + bx + c x 轴交于点 A ,点 B ,与 y 轴交于点 C ,抛物线的对称轴为直线 x = - 1 ,点 C 坐标为 ( 0 , 4 )

(1)求抛物线表达式;

(2)在抛物线上是否存在点 P ,使 ABP = BCO ,如果存在,求出点 P 坐标;如果不存在,请说明理由;

(3)在(2)的条件下,若点 P x 轴上方,点 M 是直线 BP 上方抛物线上的一个动点,求点 M 到直线 BP 的最大距离;

(4)点 G 是线段 AC 上的动点,点 H 是线段 BC 上的动点,点 Q 是线段 AB 上的动点,三个动点都不与点 A B C 重合,连接 GH GQ HQ ,得到 ΔGHQ ,直接写出 ΔGHQ 周长的最小值.

来源:2020年辽宁省朝阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的直径,两点在的延长线上,上的点,且,延长,使得,设

(1)求证:

(2)求的长;

(3)若点三点确定的圆上,求的长.

来源:2019年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆的认识解答题