如图1,小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=5,AD=4.在进行如下操作时遇到了下面的几个问题,请你帮助解决.
(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2),请你求出AE和FG的长度.
(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为y,求在平移的整个过程中,y与x的函数关系式,并求当重叠部分面积为10时,平移距离x的值(如图3).
(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).
如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.
(1)求∠EAF的度数;
(2)如图2,连接FC交BD于M,交AD于N.
①求证:AD=AF+2DM;
②若AF=10,AN=12,则MD的长为 .
下列图形都是由同样大小的矩形按一定规律组成,其中第(1)个图形的面积为2,第(2)个图形的面积为8
,第(3)个图形的面积为18
,……,则第(10)个图形的面积为( )
A.196![]() |
B.200![]() |
C.216![]() |
D.256![]() |
(本小题7分)如图1,已知是等腰直角三角形,
,点
是
的中点.作
正方形,使点
、
分别在
和
上,连接
,
.
(1)试猜想线段和
的数量关系是 并证明.
(2)将正方形绕点
逆时针方向旋转
,判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
如图,四边形ABCD是边长为1的正方形,且DE=,△ABF是△ADE的旋转图形
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)AF的长度是多少?
(4)如果连结EF,那么△AEF是怎样的三角形?
如图,在 中, , 的垂直平分线分别交 、 于点 、 , , 为 的外接圆,过点 作 的切线 交 于点 ,则下列结论正确的是 (写出所有正确结论的序号)
① ;
② ;
③若 ,则 的长为 ;
④ ;
⑤若 ,则 .
正方形ABCD中,将一个直角三角板的直角顶点与点A重合,一条直角边与边BC交于点E(点E不与点B和点C重合),另一条直角边与边CD的延长线交于点F.
(1)如图①,求证:AE="AF;"
(2)如图②,此直角三角板有一个角是45°,它的斜边MN与边CD交于G,且点G是斜边MN的中点,连接EG,求证:EG="BE+DG;"
(3)在(2)的条件下,如果=
,那么点G是否一定是边CD的中点?请说明你的理由.
如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.
(1)观察图形,写出图中所有与∠AED相等的角.
(2)选择图中与∠AED相等的任意一个角,并加以证明.
在 中, ,分别过点 , 作 平分线的垂线,垂足分别为点 , , 的中点是 ,连接 , , .则下列结论错误的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在锐角三角形 中, 是 边上的高,以 为直径的 交 于点 ,交 于点 ,过点 作 ,垂足为 ,交 于点 ,交 于点 ,连接 , , .
(1)求证: ;
(2)若 , , ,求 的长.
如图.在边长为6的正方形 中,点 , 分别在 , 上, 且 , ,垂足为 , 是对角线 的中点,连接 、则 的长为 .
如图所示,已知△ABC中,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.
(1)∠BFG与∠BGF是否相等?为什么?
(2)求由DG、GE和所围成的图形的面积(阴影部分).
如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为( )
A.3 | B.4 | C.5 | D.6 |
试题篮
()