木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中的AB和CD),这样做的根据是( )
A.矩形的对称性 B.矩形的四个角都是直角
C.三角形的稳定性 D.两点之间线段最短
如图,长方形纸片中,AB=10,将纸片折叠,使顶点落在边上的点处,折痕的一端点在边上.
图(2)
(1)如图(1),当折痕的另一端在边上且AE=5时,求AF的长
(2)如图(2),当折痕的另一端在边上且BG=13时,求AF的长.
某车间加工三块长方形钢板,它们的长分别是1.28米,1.64米,2.08米,宽都是0.25米,每平方米钢板价值440元,则这三块钢板的价值为 元.
已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式 ;自变量的取值范围 .
如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点B的坐标为(5,4),点P为线段BC上动点,当△POA为等腰三角形时,点p坐标为______________.
如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是( )
若菱形ABCD的对角线AC、BD的长分别是6cm、8cm,则菱形ABCD的面积是( )
A.20cm2 B.24cm2 C.36cm2 D.48cm2
如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;
(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?
(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?
如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从A点出发,沿对角线AC向C移动,同时动点Q以1个单位/秒的速度从C点出发,沿CB向点B移动,当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.
(1)求△CPQ的面积S与时间t之间的函数关系式;
(2)以P为圆心,PA为半径的圆与以Q为圆心,QC为半径的圆相切时,求出t的值.
(3)在P、Q移动的过程中,当△CPQ为等腰三角形时,直接写出t的值;
如图,在平面直角坐标系中,长方形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为
试题篮
()