优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆的综合题
初中数学

如图,点 C为△ ABD的外接圆上的一动点(点 C不在 BAD ̂ 上,且不与点 BD重合),∠ ACB=∠ ABD=45°

(1)求证: BD是该外接圆的直径;

(2)连结 CD,求证: 2 AC = BC + CD

(3)若△ ABC关于直线 AB的对称图形为△ ABM,连接 DM,试探究 DM 2AM 2BM 2三者之间满足的等量关系,并证明你的结论.

来源:2016年广东省广州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 MON = 90 ° OT MON 的平分线, A 是射线 OM 上一点, OA = 8 cm .动点 P 从点 A 出发,以 1 cm / s 的速度沿 AO 水平向左作匀速运动,与此同时,动点 Q 从点 O 出发,也以 1 cm / s 的速度沿 ON 竖直向上作匀速运动.连接 PQ ,交 OT 于点 B .经过 O P Q 三点作圆,交 OT 于点 C ,连接 PC QC .设运动时间为 t ( s ) ,其中 0 < t < 8

(1)求 OP + OQ 的值;

(2)是否存在实数 t ,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在,说明理由.

(3)求四边形 OPCQ 的面积.

来源:2020年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)如图1,点为矩形对角线上一点,过点,分别交于点.若的面积为的面积为,则   

(2)如图2,点内一点(点不在上),点分别为各边的中点.设四边形的面积为,四边形的面积为(其中,求的面积(用含的代数式表示);

(3)如图3,点内一点(点不在上),过点,与各边分别相交于点.设四边形的面积为,四边形的面积为(其中,求的面积(用含的代数式表示);

(4)如图4,点四等分.请你在圆内选一点(点不在上),设围成的封闭图形的面积为围成的封闭图形的面积为的面积为的面积为,根据你选的点的位置,直接写出一个含有的等式(写出一种情况即可).

来源:2020年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,半径为4的中,弦的长度为,点是劣弧上的一个动点,点是弦的中点,点是弦的中点,连接

(1)求的度数;

(2)当点沿着劣弧从点开始,逆时针运动到点时,求的外心所经过的路径的长度;

(3)分别记的面积为,当时,求弦的长度.

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)方法选择

如图①,四边形的内接四边形,连接.求证:

小颖认为可用截长法证明:在上截取,连接

小军认为可用补短法证明:延长至点,使得

请你选择一种方法证明.

(2)类比探究

[探究1]

如图②,四边形的内接四边形,连接的直径,.试用等式表示线段之间的数量关系,并证明你的结论.

[探究2]

如图③,四边形的内接四边形,连接.若的直径,,则线段之间的等量关系式是  

(3)拓展猜想

如图④,四边形的内接四边形,连接.若的直径,,则线段之间的等量关系式是  

来源:2019年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知锐角三角形内接于圆于点,连接

(1)若

①求证:

②当时,求面积的最大值.

(2)点在线段上,,连接,设是正数),若,求证:

来源:2019年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知的直径,弦与弦交于点.且,垂足为点

(1)如图1,如果,求弦的长;

(2)如图2,如果为弦的中点,求的余切值;

(3)联结,如果的内接正边形的一边,的内接正边形的一边,求的面积.

来源:2018年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知的半径长为1,的两条弦,且的延长线交于点,联结

(1)求证:

(2)当是直角三角形时,求两点的距离;

(3)记 的面积分别为,如果的比例中项,求的长.

来源:2017年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

问题提出

(1)如图①,在中,,则的外接圆半径的值为  

问题探究

(2)如图②,的半径为13,弦的中点,上一动点,求的最大值.

问题解决

(3)如图③所示,是某新区的三条规划路,其中所对的圆心角为,新区管委会想在路边建物资总站点,在路边分别建物资分站点,也就是,分别在、线段上选取点.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路.为了快捷、环保和节约成本.要使得线段之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)

来源:2018年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

问题提出

(1)如图①,在中,,点关于所在直线的对称点为,则的长度为  

问题探究

(2)如图②,半圆的直径的中点,点上,且上的动点,试求的最小值.

问题解决

(3)如图③,扇形花坛的半径为.根据工程需要.现想在上选点,在边上选点,在边上选点,用装饰灯带在花坛内的地面上围成一个,使晚上点亮时,花坛中的花卉依然赏心悦目.为了既节省材料,又美观大方,需使得灯带的长度最短,并且用长度最短的灯带围成的为等腰三角形.试求的值最小时的等腰的面积.(安装损耗忽略不计)

来源:2018年陕西省中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

问题提出

(1)如图①,是等边三角形,,若点的内心,则的长为  

问题探究

(2)如图②,在矩形中,,如果点边上一点,且,那么边上是否存在一点,使得线段将矩形的面积平分?若存在,求出的长;若不存在,请说明理由.

问题解决

(3)某城市街角有一草坪,草坪是由草地和弦与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于(即每次喷灌时喷灌龙头由转到,然后再转回,这样往复喷灌.同时,再合理设计好喷灌龙头喷水的射程就可以了.

如图③,已测出的面积为;过弦的中点于点,又测得

请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)

来源:2017年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

(1)如图①,点外一点,点上一动点.若的半径为3,且,则点到点的最短距离为 

(2)如图②,已知正方形的边长为4,点分别从点同时出发,以相同的速度沿边方向向终点运动,连接交于点,则点到点的最短距离为  

(3)如图③,在等边中,,点分别从点同时出发,以相同的速度沿边方向向终点运动,连接交于点,求面积的最大值,并说明理由.

来源:2017年陕西省中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

中,分别是两边的中点,如果上的所有点都在的内部或边上,则称的中内弧.例如,图1中的一条中内弧.

(1)如图2,在中,分别是的中点,画出的最长的中内弧,并直接写出此时的长;

(2)在平面直角坐标系中,已知点,在中,分别是的中点.

①若,求的中内弧所在圆的圆心的纵坐标的取值范围;

②若在中存在一条中内弧,使得所在圆的圆心的内部或边上,直接写出的取值范围.

来源:2019年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

对于平面直角坐标系中的图形,给出如下定义:为图形上任意一点,为图形上任意一点,如果两点间的距离有最小值,那么称这个最小值为图形间的“闭距离“,记作

已知点

(1)求(点

(2)记函数的图象为图形.若,直接写出的取值范围;

(3)的圆心为,半径为1.若,直接写出的取值范围.

来源:2018年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,点 P 的坐标为 ( x 1 y 1 ) ,点 Q 的坐标为 ( x 2 y 2 ) ,且 x 1 x 2 y 1 y 2 ,若 P Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点 P Q 的"相关矩形",如图为点 P Q 的"相关矩形"示意图.

(1)已知点 A 的坐标为 ( 1 , 0 )

①若点 B 的坐标为 ( 3 , 1 ) ,求点 A B 的"相关矩形"的面积;

②点 C 在直线 x = 3 上,若点 A C 的"相关矩形"为正方形,求直线 AC 的表达式;

(2) O 的半径为 2 ,点 M 的坐标为 ( m , 3 ) ,若在 O 上存在一点 N ,使得点 M N 的"相关矩形"为正方形,求 m 的取值范围.

来源:2016年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆的综合题试题