(1)方法选择
如图①,四边形是的内接四边形,连接,,.求证:.
小颖认为可用截长法证明:在上截取,连接
小军认为可用补短法证明:延长至点,使得
请你选择一种方法证明.
(2)类比探究
[探究1]
如图②,四边形是的内接四边形,连接,,是的直径,.试用等式表示线段,,之间的数量关系,并证明你的结论.
[探究2]
如图③,四边形是的内接四边形,连接,.若是的直径,,则线段,,之间的等量关系式是 .
(3)拓展猜想
如图④,四边形是的内接四边形,连接,.若是的直径,,则线段,,之间的等量关系式是 .
问题背景:
如图①,在四边形 中, , ,探究线段 , , 之间的数量关系.
小吴同学探究此问题的思路是:将 绕点 ,逆时针旋转 到 处,点 , 分别落在点 , 处(如图② ,易证点 , , 在同一条直线上,并且 是等腰直角三角形,所以 ,从而得出结论: .
简单应用:
(1)在图①中,若 , ,则 .
(2)如图③, 是 的直径,点 、 在 上, ,若 , ,求 的长.
拓展规律:
(3)如图④, , ,若 , ,求 的长(用含 , 的代数式表示)
(4)如图⑤, , ,点 为 的中点,若点 满足 , ,点 为 的中点,则线段 与 的数量关系是 .
已知的直径,弦与弦交于点.且,垂足为点.
(1)如图1,如果,求弦的长;
(2)如图2,如果为弦的中点,求的余切值;
(3)联结、、,如果是的内接正边形的一边,是的内接正边形的一边,求的面积.
如图,在 中, 为 的直径, 为 的弦,点 是 的中点,过点 作 的垂线,交 于点 ,交 于点 ,分别连接 , .
(1) 与 的数量关系是 ;
(2)求证: ;
(3)若 , ,求阴影部分图形的面积.
问题提出
(1)如图①,在中,,,则的外接圆半径的值为 .
问题探究
(2)如图②,的半径为13,弦,是的中点,是上一动点,求的最大值.
问题解决
(3)如图③所示,、、是某新区的三条规划路,其中,,,所对的圆心角为,新区管委会想在路边建物资总站点,在,路边分别建物资分站点、,也就是,分别在、线段和上选取点、、.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路、和.为了快捷、环保和节约成本.要使得线段、、之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)
如图,动点 在以 为圆心, 为直径的半圆弧上运动(点 不与点 、 及 的中点 重合),连接 .过点 作 于点 ,以 为边在半圆同侧作正方形 ,过点 作 的切线交射线 于点 ,连接 、 .
(1)探究:如图一,当动点 在 上运动时;
①判断 是否成立?请说明理由;
②设 , 是否为定值?若是,求出该定值,若不是,请说明理由;
③设 , 是否为定值?若是,求出该定值,若不是,请说明理由;
(2)拓展:如图二,当动点 在 上运动时;
分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)
问题提出
(1)如图①,是等边三角形,,若点是的内心,则的长为 ;
问题探究
(2)如图②,在矩形中,,,如果点是边上一点,且,那么边上是否存在一点,使得线段将矩形的面积平分?若存在,求出的长;若不存在,请说明理由.
问题解决
(3)某城市街角有一草坪,草坪是由草地和弦与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于(即每次喷灌时喷灌龙头由转到,然后再转回,这样往复喷灌.同时,再合理设计好喷灌龙头喷水的射程就可以了.
如图③,已测出,,的面积为;过弦的中点作交于点,又测得.
请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)
已知平面图形 ,点 、 是 上任意两点,我们把线段 的长度的最大值称为平面图形 的“宽距”.例如,正方形的宽距等于它的对角线的长度.
(1)写出下列图形的宽距:
①半径为1的圆: ;
②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“: ;
(2)如图2,在平面直角坐标系中,已知点 、 , 是坐标平面内的点,连接 、 、 所形成的图形为 ,记 的宽距为 .
①若 ,用直尺和圆规画出点 所在的区域并求它的面积(所在区域用阴影表示);
②若点 在 上运动, 的半径为1,圆心 在过点 且与 轴垂直的直线上.对于 上任意点 ,都有 ,直接写出圆心 的横坐标 的取值范围.
在中,,分别是两边的中点,如果上的所有点都在的内部或边上,则称为的中内弧.例如,图1中是的一条中内弧.
(1)如图2,在中,,,分别是,的中点,画出的最长的中内弧,并直接写出此时的长;
(2)在平面直角坐标系中,已知点,,,,在中,,分别是,的中点.
①若,求的中内弧所在圆的圆心的纵坐标的取值范围;
②若在中存在一条中内弧,使得所在圆的圆心在的内部或边上,直接写出的取值范围.
在平面直角坐标系中,已知点 A(﹣2,0), B(2,0), C(3,5).
(1)求过点 A, C的直线解析式和过点 A, B, C的抛物线的解析式;
(2)求过点 A, B及抛物线的顶点 D的⊙ P的圆心 P的坐标;
(3)在抛物线上是否存在点 Q,使 AQ与⊙ P相切,若存在请求出 Q点坐标.
如图, 的半径为1,点 是 的直径 延长线上的一点, 为 上的一点, , .
(1)求证:直线 是 的切线;
(2)求 的面积;
(3)点 在 上运动(不与 、 重合),过点 作 的垂线,与 的延长线交于点 .
①当点 运动到与点 关于直径 对称时,求 的长;
②当点 运动到什么位置时, 取到最大值,并求出此时 的长.
定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.
(1)如图1, 是 中 的遥望角,若 ,请用含 的代数式表示 .
(2)如图2,四边形 内接于 , ,四边形 的外角平分线 交 于点 ,连结 并延长交 的延长线于点 .求证: 是 中 的遥望角.
(3)如图3,在(2)的条件下,连结 , ,若 是 的直径.
①求 的度数;
②若 , ,求 的面积.
如图①,在平面直角坐标系中,圆心为 的动圆经过点 且与 轴相切于点 .
(1)当 时,求 的半径;
(2)求 关于 的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;
(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到 的距离等于到 的距离的所有点的集合.
(4)当 的半径为1时,若 与以上(2)中所得函数图象相交于点 、 ,其中交点 在点 的右侧,请利用图②,求 的大小.
如图, 是 的直径, , ,连接 .
(1)求证: ;
(2)若直线 为 的切线, 是切点,在直线 上取一点 ,使 , 所在的直线与 所在的直线相交于点 ,连接 .
①试探究 与 之间的数量关系,并证明你的结论;
② 是否为定值?若是,请求出这个定值;若不是,请说明理由.
试题篮
()