如图,在平面直角坐标系中, 各顶点的坐标分别为 , , .
(1)作出 关于原点 成中心对称的△ ;
(2)作出点 关于 轴的对称点 ,若把点 向右平移 个单位长度后落在△ 的内部(不包括顶点和边界),求 的取值范围.
在平面直角坐标系中, , , 三点坐标分别为 , , .
(1)如图1,顺次连接 , , ,得 .
①点 关于 轴的对称点 的坐标是 ,点 关于 轴的对称点 的坐标是 ;
②画出 关于原点对称的△ ;
③ ;
(2)利用四边形的不稳定性,将第二象限部分由小正方形组成的网格,变化为如图2所示的由小菱形组成的网格,每个小菱形的边长仍为1个单位长度,且较小内角为 ,原来的格点 , , 分别对应新网格中的格点 , , ,顺次连接 , , ,得△ ,则 .
如图,在平面直角坐标系中,.
(1)将点向右平移3个单位长度,再向上平移1个单位长度,得到点,则点的坐标是 .
(2)点与点关于原点对称,则点的坐标是 .
(3)反比例函数的图象经过点,则它的解析式是 .
(4)一次函数的图象经过,两点,则它的解析式是 .
已知抛物线与轴相交于和两点,并与轴相交于点.抛物线与关于坐标原点对称,点、在上的对应点分别为、
(1)求抛物线的函数表达式;
(2)在抛物线上是否存在点,使得△的面积等于△的面积?若存在,求点的坐标;若不存在,请说明理由.
试题篮
()