优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

如图,路边有一根电线杆AB和一块半圆形广告牌,在太阳光照射下,杆顶A的影子刚好落在半圆形广告牌的最高处G,而半圆形广告牌的影子刚好落在平地上一点E,若BC=5米,半圆形的广告牌直径为6米,DE=2米.

(1)求电线杆落在广告牌上的影子长(即︵CG的长).
(2)求电线杆的高度.

  • 题型:未知
  • 难度:未知

如图,已知在△ABC与△DEF中,∠C=54°,∠A=47°,∠F=54°,∠E=79°,
求证:△ABC∽△DEF

  • 题型:未知
  • 难度:未知

如图,已知∆ABC中,,D是AB上一动点,DE∥BC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形与AB、AC分别交于点M、N.

(1)证明:∆ADE
(2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式. 当x为何值时y有最大值?

  • 题型:未知
  • 难度:未知

已知图1和图2中的每个小正方形的边长都是1个单位.
(1)将图1中的格点△ABC,先向右平移3个单位,再向上平移2个单位,得到△A1B1C1,请你在图1中画出△A1B1C1.

(2)在图2中画出一个与格点△DEF相似但相似比不等于1的格点三角形.

  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠A=90°,AB=8,AC=6,M是AB上的动点(不与A、B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O中作内接矩形AMPN.令AM=x.

(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?
(3)在点M的运动过程中,设△MNP与梯形BCNM重合的面积为y,求y关于x的函数关系式,并求x为何值时,y的值最大,最大值是多少?

  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.

  • 题型:未知
  • 难度:未知

如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.

(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;

  • 题型:未知
  • 难度:未知

如图,在矩形中,点分别在边上,,求的长.

  • 题型:未知
  • 难度:未知

如图,在阳光下某一时刻大树AB的影子落在墙DE上的C点,同时1.2 m的标杆影长3 m,已知CD=4m,BD="6" m,求大树的高度.

  • 题型:未知
  • 难度:未知

如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.

(1)求证:=AB·AD;
(2)若AD=4,AB=6,求的值.

  • 题型:未知
  • 难度:未知

如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,

(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求□ABCD的面积.

  • 题型:未知
  • 难度:未知

(满分14分)如图,已知,点从点开始沿边向点的速度移动,点从点开始向点以相同的速度移动,若同时出发,移动时间为(0≤≤6).

(1)设的面积为,求关于的函数解析式;
(2)当的面积最大时,沿直线翻折后得到,试判断点是否落在直线上,并说明理由.
(3)当为何值时,相似.

  • 题型:未知
  • 难度:未知

已知:ΔABC在坐标平面内,三个顶点的坐标为A(0,3)、B(3,4)、C(2,2),(正方形网格中,每个小正方形边长为1个单位长度)
(1)画出ΔABC向下平移4个单位得到的ΔA1B1C1
(2)以B为位似中心,在网格中画出ΔA2BC2,使ΔA2BC2与ΔABC位似,且位似比2 :1,直接写出C2点坐标是              
(3)ΔA2BC2的面积是              平方单位。

  • 题型:未知
  • 难度:未知

如图,在ABCD中,过点B作BE⊥CD,垂足为E,连接AE.F为AE上一点,且∠BFE=∠C.

⑴试说明:△ABF∽△EAD;
⑵若AB=8,BE=6,AD=7,求BF的长.

  • 题型:未知
  • 难度:未知

如图,△ABC在方格纸中
请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;
以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出放大后的位似图形
计算的面积S.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题