如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:
(1)试证明三角形△ABC为直角三角形;
(2)判断△ABC和△DEF是否相似,并说明理由;
(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC相似(要求:用尺规作图,保留痕迹,不写作法与证明).
宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):
第一步:作一个正方形ABCD;
第二步:分别取AD,BC的中点M,N,连接MN;
第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;
第四步:过E作EF⊥AD,交AD的延长线于F.
请你根据以上作法,证明矩形DCEF为黄金矩形.
一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看。如图,是一个参加空姐选拔活动的选手情况,那么她应该穿多高的鞋子好看?(精确到1cm)(参考数据:黄金分割数:)
如图,在△ABC中,AB=AC=10cm,BC=12cm,点D是BC边的中点.点P从点B出发,以acm/s(a>0)的速度沿BA匀速向点A运动;点Q同时以1cm/s的速度从点D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为ts.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)设点M在AC上,四边形PQCM为平行四边形.
①若a=,求PQ的长;
②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明
理由.
正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF="FM"
(2)当AE=1时,求EF的长.
如图,甲、乙两人分别从A(1,)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.
(1)请说明甲、乙两人到达O点前,MN与AB不可能平行.
(2)当t为何值时,△OMN∽△OBA?
(3)甲、乙两人之间的距离为MN的长,设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.
如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点, PO的延长线交BC于Q.
(1)求证:△ P O D ≌ △Q O B ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形P B Q D是菱形.
图1中所示的遮阳伞,伞柄垂直于地面,其示意图如图2.当伞收紧时,点与点重合(此时AC=PN+CN);当伞慢慢撑开时,动点由向移动;当点到过点时,伞张得最开.已知伞在撑开的过程中,总有分米,分米,分米
(1)求长的取值范围; (2)当时,求的值;
(3)在阳光垂直照射下,伞张得最开,求伞下的阴影(假定为圆面)面积为 (结果保留).
(1)探究新知:如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由.
(2)结论应用:如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F. 试证明:MN∥EF.
(3)变式探究:如图3,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,过点M作MG⊥x轴,过点N作NH⊥y轴,垂足分别为E、F、G、H. 试证明:EF ∥GH.
数学课上,李老师出示了这样一道题目:如图,正方形的边长为,为边延长线上的一点,为的中点,的垂直平分线交边于,交边的延长线于.当时,与的比值是多少?
经过思考,小明展示了一种正确的解题思路:过作直线平行于交,分别于,,如图,则可得:,因为,所以.可求出和的值,进而可求得与的比值.
(1) 请按照小明的思路写出求解过程.
(2) 小东又对此题作了进一步探究,得出了的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.
如图,AB是⊙O的直径,点C在AB延长线上,点D在⊙O上,连接AD,BD,BO=BC=BD,OE⊥BD于E,连接AE.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为4,求AE的长.
类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若,求的值。
(1)尝试探究
在图1中,过点E作交BG于点H,则AB和EH的数量关系是 ,CG和EH的数量关系是 ,的值是
(2)类比延伸
如图2,在原题的条件下,若则的值是 (用含的代数式表示),试写出解答过程。
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F,若,则的值是 (用含的代数式表示).
已知△ABC中,AB=,AC=,BC=6.
(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;
(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点
的三角形为格点三角形.
①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明);
②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需
证明).
试题篮
()