优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

如图1,在直角梯形ABCD中,AD//BC,∠A=90°,AB=8cm,AD=6cm, BC=10cm。点P从点B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF从CD出发沿DA方向匀速运动,速度为1 cm/s,且EF与BD交于点Q,连接PE、PF。当点P与点Q相遇时,所有运动停止。若设运动时间为t(s).
(1)求CD的长度
(2)当PE//AB时,求t的值;
(3)①设△PEF的面积为S,求S关于t的函数关系式;
②如图2,当△PEF的外接圆圆心O恰好在EF中点时,则t的值为          (请直接写出答案)

  • 题型:未知
  • 难度:未知

如图1,已知,CE是Rt△ABC的斜边AB上的高,点P是CE的延长线上任意一点,BG⊥AP,
求证:(1)△AEP∽△DEB
(2) CE2=ED·EP

若点P在线段CE上或EC的延长线上时(如图2和图3),上述结论CE2=ED·EP还成立吗?若成立,请给出证明;若不成立,请说明理由.(图2和图3挑选一张给予说明即可)

  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=8,BC=7,AC=6,有一动点P从A沿AB移动到B,移动速度为2单位/秒,有一动点Q从C沿CA移动到A,移动速度为l单位/秒,问两动点同时出发,移动多少时间时,△PQA与△ABC相似.

  • 题型:未知
  • 难度:未知

如图(1)△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线) 于G,H点,如图(2)

(1)问:始终与△AGC相似的三角形有              
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)
(3)问:当x为何值时,△AGH是等腰三角形.

  • 题型:未知
  • 难度:未知

扇形AOB中,OA、OB是半径,且∠AOB=90°,OA=6,点C是AB上异于A、B的动点。过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE.
(1)求证:OG=CH;
(2)当点C在AB上运动时,线段DE的长是否为定值?若为定值,请求出该值;否则,请说明理由;
(3)设CH,CD,求之间的函数关系式.

  • 题型:未知
  • 难度:未知

将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=   ;直线BC与直线B′C′所夹的锐角为   度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

  • 题型:未知
  • 难度:未知

如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.

(1)求证:△BDG∽△DEG;
(2)若EG•BG=4,求BE的长.

  • 题型:未知
  • 难度:未知

矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.

(1)求证:⊿AEF∽⊿DCE
(2)求tan∠ECF的值.

  • 题型:未知
  • 难度:未知

己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD交于点G.

(1)求证:BE=DF;
(2)当时,求证:四边形BEFG是平行四边形.

  • 题型:未知
  • 难度:未知

如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且
AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形,
(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.

  • 题型:未知
  • 难度:未知

如图,在直角坐标平面中,O为原点,A(0,6),B(8,0)。点P从点A出发,以每秒2个单位长度的速度沿射线AO方向运动,点Q从点B出发,以每秒一个单位长度的速度沿x轴正方向运动,P,Q两动点同时出发,设移动时间为t(t>0)秒.
(1)在点P,Q的运动过程中,当点P在AO的延长线上时,若△POQ与△AOB相似,求t的值;
(2)如图2,当直线PQ与线段AB交于点M,且时,求直线PQ的解析式;
(3)以点O为圆心,OP长为半径画圆⊙O,以点B为圆心,BQ长为半径画⊙B,讨论⊙O和⊙B的位置关系,并直接写出相应t的取值范围.

  • 题型:未知
  • 难度:未知

如图,点在线段上,且是等边三角形。
① 若·,求证
② 当时,试求的度数。

  • 题型:未知
  • 难度:未知

△ABC中,AB=1,AC=2,D是BC中点,AE平分∠BAC交BC于E,且DF∥AE.求CF的长.

  • 题型:未知
  • 难度:未知

如图,△ABC中,∠BAC=90°,正方形的一边GF在BC上,其余两个顶点D,E分别在AB,AC上.连接AG,AF分别交DE于M,N两点.
(1)求证:.
(2)求证:
(3)若AB=AC=2,求MN的长.
    

  • 题型:未知
  • 难度:未知

如图①,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
已知△ABC中,∠A<∠B<∠C
(1)利用直尺和圆规,在图②中作出△ABC的自相似点P(不写作法,但需保留作图痕迹);
(2)若△ABC的三内角平分线的交点P是该三角形的自相似点,求该三角形三个内角的度数.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题